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PREFACE 

This book investigates the various aspects of shape optimization of two
dimensional continuum structures, including shape design sensitivity analysis, 
structural analysis using the boundary element method (BEM), and shape 

optimization implementation. 

The book begins by reviewing the developments of shape optimization, 

followed by the presentation of the mathematical programming methods for 
solving optimization problems. The basic theory of the BEM is presented 

which will be employed later on as the numerical tool to provide the structural 
responses and the shape design sensitivities. 

The key issue of shape optimization, the shape design sensitivity analy

sis, is fully investigated. A general formulation of stress sensitivity using the 
continuum approach is presented. The difficulty of the modelling of the ad

joint problem is studied, and two approaches are presented for the modelling 
of the adjoint problem. The first approach uses distributed loads to smooth 

the concentrated adjoint loads, and the second approach employs the singu
larity subtraction method to remove the singular boundary displacements and 

tractions from the BEM equation. 

A novel finite difference based approach to shape design sensitivity is pre

sented, which overcomes the two drawbacks of the conventional finite difference 

method. This approach has the advantage of being simple in concept, and eas
ier implementation. 

A shape optimization program for two-dimensional continuum structures is 
developed, including structural analysis using the BEM, shape design sensitiv

ity analysis, mathematical programming, and the design boundary modelling. 
Some numerical examples are used to demonstrate the proposed formulations 

for shape design sensitivity analysis and shape optimization implementation. 
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Chapter 1 

Introduction 

1.1 Introduction 

Engineering design is an iterative process, in which the design is continuously 

modified until it meets the criteria set by the engineers. The traditional design 

process is carried out by the so called 'trial and error' method, in which the 

designer uses his experience and intuition to lead the design process. This 

manual based design process has the advantage that the designer's knowledge 

can be utilized in the design, and this approach still dominates the design 

method. But as the design problem becomes more complex, design modifica

tion becomes much more difficult. Therefore there is a urgent need for a new 

tool to guide the design modification. 

The optimum design process attempts to use mathematical optimization 

techniques to meet the above challenge, in which the design problem is trans

formed into a mathematical optimization problem, and the design is modified 

automatically toward the best design (or optimum design). 

The basic principles of the optimization theory were established a long time 

ago (17th and 18th centuries). However pure mathematical optimization is sel-
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dom used in practical design because of the high idealization of the technique. 

Since the optimization is an iterative process requiring large computation, the 

real engineering application of optimization methods has only now become 

feasible with the advent of high performance digital computers. 

The applications of optimization range from science and engineering, to eco

nomics and commerce. One application of optimization is the optimum design 

of structures. For one particular design, there may exist a number of solutions 

which satisfy the given conditions. The purpose of the optimization JIlethod 

is, instead of simply producing a feasible design, we can search amongst all 

the possible designs and finally determine the optimum one. Therefore we can 

define design optimization as 'by using a mathematical technique to determine 

an optimal design which satisfies the criteria set up by design engineers'. 

One important class of problems in structural optimization is shape op

timization, which concerns the selection of the geometry parameters of the 

structure. These geometry parameters, which can change during design mod

ification, are called shape design variables. Besides the design variables, there 

are two terms frequently used in optimization - the objective and the con

straints. The objective is the goal in which the design strives to achieve, for 

example the minimum material, the minimum stress concentration etc. The 

constraints are those criteria in which a design must meet. One example of the 

constraints in shape optimization is that the stress of a structure must not ex

ceed the allowable stress. A large number of optimization problems belong to 

shape optimization, as in the mechanical design and the aerospace engineering. 

The purpose of this thesis is to investigate the various aspects of shape op

timization, including the shape design sensitivity analysis, structural analysis 

using the boundary element method, and shape optimization implementation. 

The outline of the thesis is as follows. 

The introduction chapter gives a literature survey of shape optimization. 
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The survey follows the developments of shape optimization in the structural 

design for the last two decades, including the structural optimization using the 

finite element method and the boundary element method, and shape design 

sensitivity analysis. 

Chapter 2 introduces the basic theory of optimization methods. Various 

mathematical programming methods for solving optimization problems are 

listed, and the difficulties related with shape optimization are discussed. 

Chapter 3 contains the boundary element formulation of elastostatics. Af

ter deriving the basic boundary integral equation, the boundary discretization 

and the numerical implementation are described. 

Chapter 4 investigates shape design sensitivity analysis. First, the two 

main approaches for sensitivity analysis are compared, and the continuum ap

proach is explained in detail. Secondly, the implementation of the displacement 

sensitivity analysis by the continuum approach is given. A general formula

tion for stress sensitivity using the continuum approach is derived, followed by 

the discussions of the adjoint loads. Two approaches for the modelling of the 

adjoint problem are presented, one uses the distributed loads to replace the 

singular loads, and the another employs the singularity subtraction method to 

remove the singularity from the BEM equation. A new finite difference based 

approach to shape design sensitivity is derived next, which overcomes the two 

drawbacks of the conventional finite difference method. A few numerical ex

amples are presented to justify the proposed formulations. 

Chapter 5 describes the shape optimization, which includes discussions of 

the modelling of both the design model and the analysis model, the automatic 

remeshing method, the implementation of a 2-D shape optimization program, 

and finally some examples. 
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1.2 Review of Shape Optimization 

The mathematical theory of optimization started as earlier as 17th century. 

The necessary conditions for unconstrained problems were set by Euler, and 

constrained problems by Lagrange. In 1638, Galileo Galilei [1) discussed the 

optimal shape of the beam, and the optimal elastic column was formulated 

by Lagrange [2). Historically there were many scholars who were dedicated 

to optimization, among them were Isaac Newton (1643-1727), Jacob Bernoulli 

(1655-1705), William Rowan HamIlton (1808-1865), Lagrange (1736-1813), Eu

ler (1707-1783). 

Unfortunately, the pure mathematical approach can only solve very sim

ple idealized problems, whereas the practical problems are more complicated. 

However the mathematical optimization theory provides a foundation for nu

merical optimization, therefore it is still an important research field. 

In the following, a brief review of shape optimization is given with the 

author's remarks, which includes 3 fields: 

1. Shape Optimization by using the finite element method. 

2. Shape optimization by using the boundary element method. 

3. Shape design sensitivity analysis. 

1.2.1 Shape Optimization using the Finite Element Method 

Since most of the structural problems can not be solved analytically, engineers 

searched alternative methods, i.e. the numerical methods. Numerical methods 

employ various approximation concepts to obtain a numerical solution for the 

problem. For the last three decades, the finite element method (FEM) has 

become a powerful tool for structural analysis [3,4). As the structural analysis 
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is an integrated part of shape optimization system, the progress of structural 

optimization often depends on the development of the FEM. 

Schmit [5] was the first person to set forth the general approach of struc

tural optimization in 1960, which indicated the feasibility to couple the FEM 

and the nonlinear mathematical programming for the optimum structural de

sign. This were followed by the coupling of the FEM and the mathematical 

programming by Kicher, Gellatly et al. [6, 7, 8]. The introduction of the 

mathematical programming coupled with the FEM is a milestone in solving 

practical structure optimization problems, which proved to be the most suc

cessful tool for the optimum structural design. One of the first approaches of 

shape optimization was presented by Zienkiewicz and Campbell [9], in which 

they used the finite elements to model the problem, and the design variables 

were the boundary nodes. The numerical solution of the optimization problem 

was obtained by the sequential linear programming, and the direct differen

tial method for the design sensitivities. Since then many researches have been 

carried out in the field of shape optimization problems using the FEM [10]-[17]. 

Schnack [18] presented a method for stress concentration using finite el

ement formulation. Tvergaard [19] formulated a general optimal problem of 

two-dimensional elastic components, the approaches were related with the min

imum volume and minimum stresses (stress concentration). Oda [20] developed 

a technique for optimum strength shape, he also presented a pattern trans

formation method to shape optimization, which is based on the stress-ratio 

method and the proportional transformation of the finite elements constitut

ing the boundary [21]. 

Ramakrishnan and Francavilla [22] used the similar formulation of Zienkiewicz 

and Cambell, but employed the penalty function. A function space gradient 

projection method for two-dimensional elastic bodies was presented by Chun 

and Haug [23], using the design sensitivity analysis method presented by Rous

selet and Haug [24] and the gradient projection method by Haug and Arora 
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The optimality criteria method was first introduced by Prager et al. [26] 

for continuum structures and by Berke [27] for the discretized system. Fleury 

[28] and Braibant [29] introduced the dual formulation in the optimality crite

ria method. Kunar and Chan [35] used a fully stress criterion to minimize the 

weight. Dems and Mroz [30, 31, 32] presented a quite general approach of shape 

optimal design using both the optimality criteria method and the variational 

calculus, and the optimality conditions were generated for both the conserva

tive and the nonconservative load systems. The variational formulations for 

shape optimization can be seen in [33, 34] 

The three-dimensional shape optimization problems have been presented by 

Kodiyalam and Vanderplaats [36] using the forced approximation technique. In 

their approach, the approximate stresses were obtained through linearization of 

nodal forces rather than by direct linearization of the stresses. The applications 

of three-dimensional shape optimization can be found in [37]-[40] 

1.2.2 Shape Optimization using the Boundary Element 

Method 

Despite the success of FEM in shape optimization, there still remains one main 

drawback. The FEM is a domain method, which requires the discretization 

of the whole domain. The remeshing during the iterations of the optimization 

process is very expensive, especially in three-dimensional cases, which also 

often causes element distortion near the design boundary. 

Recently, the boundary element method (BEM) has been recognized as an 

alternative numerical method for engineering problems [41,42]. The BEM dis

cretizes the boundary only, so the remeshing procedure becomes much more 

easier than FEM. This feature, as well as the fact that BEM usually provides 
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more, accurate structural responses on the boundary, makes BEM a very at

tractive numerical method in the application of shape optimization. Fig. 1.1 

shows an optimum design example of a fillet from Zhao and Adey using BEM 

[43], and Yang, Choi and Haug [44] using FEM. Fig. l.l(a) and Fig. l.l(b) are 

the meshes of BEM and FEM at the initial designs respectively. Fig. 1.1(c) 

and Fig. 1.1 (d) show the meshes of the final designs. It can be observed that 

the number of elements required in the FEM model is much larger than the 

BEM model, and the mesh of FEM has changed both inside the domain and 

along the boundary during optimization, whereas the mesh of the BEM model 

changes only on the boundary. In this problem only the mesh on the design 

boundary of the BEM model has changed. 

The use of the BEM in shape optimization started from the 1980's. One of 

the earliest paper was written by T. Futagami (1981) [45] in which he combined 

the BEM with the linear programming to solve the partial differential equa

tion. Futagami [46, 47] extended the initial linear programming to dynamic 

programming, and presented a coupling method of FEM and BEM. Barone 

and Caulk [48] optimized the position, the size and the surface temperature 

of circular holes inside a two-dimensional heat conductor. Meric [49, 50, 51] 

investigated two model problems by constructing the problems as the steady 

state optimal problem governed by elliptic partial differential equations. 

Mota Soares, Rodrigues, Oliveira and Haug [52] proposed a model for opti

mal shape of solid and hollow shafts, which is based on the boundary element 

method and the nonlinear programming. The material derivative and the ad

joint load methods were used by Mota Soares and Choi [53] to model the min

imum compliance problems and the stress constraints. The determination of 

the optimum shape of two-dimensional structures was presented by Zochowski 

and Mizukami [54], with the objective of minimum area and constraints of dis

placements and geometries. Zhao and Adey [55] obtained the optimum shape 
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of fillet using BEM and the linear programming, with different design variables 

and design boundary modelling. 

Kane [56] used the nonconforming quadratic elements to optimize the two 

dimensional elastic components. The sensitivity is carried out by differentiat

ing the system matrix analytically. Defourny [57, 58] used a similar method 

of Kane to solve the potential problems. 

Burczynsky and Adamczyk [59, 60] formulated the optimality conditions, 

and the nonlinear system was solved by the Newton-Raphson method. They 

also formulated the problems with maximum stiffness as the criterion, and 

extended the boundary element formulation of shape optimization to dynamic 

constraints. Gracia and Doblare [61] presented a formulation for the Saint

Venant torsion problems, which include homogeneous isotropic and orthotropic 

bodies 

Eizadian and Trompette [62] , using BEM and the linear programming, 

developed a model for shape optimal design with objective of minimum tan

gential stresses. The geometry is defined by straight and circular elements. 

Several problems were solved by using the Lagrange multipliers method. 

The coupling of FEM and BEM has been employed by Kamiya and Kita 

[63] which took the advantages of easier remeshing of BEM and the sparse 

matrix of FEM. They also presented an adaptive method for shape optimiza

tion [64]. The application of boundary element method with subregions has 

been developed by Kamiya, Nagai and Abe [65] for multi-regions or slender 

problems. Recently, Sandgren and Wu [66] employed the same idea of Nagai 

et al. to solve the two and three dimensional elasticity problems. The example 

of a hook by Sandgren demonstrated that the subregion approach can reduce 

the computing time significantly. Chaudouet-Miranda and Yafi applied the 

BEM to three-dimensional optimum design, and the modification procedure 

was based on the stress reduction method by Schnack [18]. The comparisons 
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on BEM and FEM in shape optimization have been studied by Zochowski and 

Mizukami [54], Hou and Sheen [68]. 

1.2.3 Shape Design Sensitivity Analysis 

Because the design sensitivity plays a key role in shape optimization, much 

attention has been paid to the calculation of shape design sensitivity analy

sis. There are two main approaches to calculate the design sensitivity in the 

contents of FEM: the discretized approach (DA) and the continuum approach 

(CA). The DA uses a discretized model to carry out the sensitivity analy

sis, which includes three methods: finite difference method (FDM), analytical 

method (ANM) and semi-analytical method (SAM). 

The FDM is to disturb the design variables one by one, and using the finite 

difference formula to approximate the derivatives. FDM has the advantage of 

being simple in concept, and easier implementation, but FDM has two serious 

drawbacks as indicated by [69, 70], 1) the accuracy often depends upon the 

perturbation step, 2) the computation cost is usually higher. 

The ANM is to differentiate the system equation directly with respect to the 

design variables. Unfortunately the stiffness matrix is usually nonlinear with 

the shape design variables, therefore it is difficult to obtain the derivative of the 

stiffness matrix analytically. The SAM is the most used method in practical 

sensitivity calculation because its generality and easier implementation. This 

method differentiates the system equation first as in the ANM, then employs 

the finite difference method to calculate the derivative of the stiffness matrix. 

However many researches indicated that SAM could have serious accuracy 

problem for beam, plate and solid problems [71]-[74]. 

The second approach (CA) uses the material derivative method varI

ational method ) of continuum mechanics to obtain the total derivative of 

structural responses. The CA derives the sensitivity formulation before dis-
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cretization, so no approximation is involved in the formulation. By defining an 

adjoint problem, the sensitivity can be obtained from the solutions of both the 

initial problem and the adjoint problem. This approach was first proposed by 

Cea, Zolesio and Rousselet [75, 76, 77], and developed by Haug and Choi et al. 

[78, 79]. The general formulation of elasticity problems was presented by Haug, 

Choi and Komkov [79]. Dems and Mroz [32] presented a similar approach based 

on the variational method, which included more general boundary conditions. 

The same formulation of Dems was derived by R. B. Haber [80] using a mutual 

form of the Hu-Washizu principle. 

In addition to elastostatics problems, the continuum approach has also 

been applied to thermoelasticity problems by Dems [81], dynamic problems by 

Haug [82], and the nonlinear response problems by Arora and Wu [83]. 

The main difficulty of using the continuum approach is how to evaluate 

the solution of the adjoint problem, since the adjoint loads are singular loads 

(i.e. concentrated point loads). Even though some local averaging method has 

been used to smooth the singularity [84], the accuracy is remaining an open 

question, especially for stress sensitivity. 

As in the FEM case, there exist the s<tme two classes of approach for shape 

design sensitivity by using the BEM: the discretized approach (DA) and the 

continuum approach (CA). 

The finite difference scheme has been used by V. U. Nguyen and R. Arenicz 

[85] to obtain the design sensitivity in underground excavation problem. Wu 

[86] solved several two and three-dimensional optimum design problems by 

using finite difference method for sensitivity calculation. 

A new finite difference based approach to shape design sensitivity calcula

tion was presented by Zhao and Adey [87], which overcomes the two drawbacks 

of the finite difference method. The new approa<;:h has the advantage of finite 
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difference method, i.e. simple in concept and easier implementation, and can 

be used with either the BEM or the FEM 

Kane [88] presented a formulation of direct differentiation for design sensi

tivity analysis, in which the system matrix was differentiated analytically after 

the boundary discretization. Recently Saigal, Aithal and Kane [89] developed 

a semi-analytical sensitivity formulation, with forward-difference approxima

tion. Barone and Yang [90] formulated the design sensitivity by differentiating 

the boundary integral equation before discretization, and a rigid body inte

gral identity was used to remove the singularity in the displacement sensitivity 

equation. The same concept of Barone and Yang was used by Zhang and 

Mukherjee [91] using a new boundary integral method [92], in which the basic 

unknowns were the tractions and the derivatives of the tangential displace

ments. 

The continuum approach has been used by Mota Soares et al. [93] by intro

ducing an adjoint system for two-dimensional solid and hollow shafts. Kwak 

and Choi [94, 95] have developed a general method for shape design sensitivity 

analysis of elliptical equations using a direct boundary integral formulation. 

The material derivative method was used to obtain an explicit expression for 

the variation of the structural response, and the formulations were applied to 

potential and elastostatics problems. An improved formulation of Kwak and 

Choi [95] was developed by Zhao and Adey [96], in which a singularity subtrac

tion technique was employed to model the adjoint problem. Meric used the 

material derivative method for design sensitivity of thermoelastic solids [97]. 

A large amount literature on shape design sensitivity analysis and shape 

optimization has emerged over the last two decades. The most important 

conferences dedicated to structural optimization are given in [98]-[104], which 

provide the state of structural optimization, and can be used for further refer

ences. 
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Fig. 1.I(e) The Mesh at the Final Design of the BEM Model 

--- ~ 
/ f'~~ 

V 
i"t'r:::-
:--

1= t-t- t::'::, 

V l 
k!' 

I '" 

Fig. 1.I(d) The Mesh at the Final Design of the FEM Model 



www.manaraa.com

Chapter 2 

Basic Numerical Optimization 

Techniques 

2.1 Introduction 

The aim of this chapter is to provide the basic concepts and terminology in 

shape optimization by the mathematical programming method, which will be 

used throughout the thesis. Various algorithms of the mathematical program

ming methods are presented to give a general view of the numerical methods 

available today. The information presented here is mainly from References 

[1]-[5], in which more details can be found. 

2.2 Basic Concepts and Terminology 

In general, a shape optimization problem can be formed as a minimization 

problem under certain constraints, which can be stated mathematically as 

follows: 

Minimize: J(X) (2.1) 
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Subject to: 

9j(X) ~ 0 j = I,M (2.2) 

hk(X) = 0 k= I,L (2.3) 

x~ < X· < X~ 1- ,- ... i= I,N (2.4) 

X are the design variables, X = [Xl, X2, ""XNjT. f(X) is called the objective 

function, which depends on the design variables X. The ob jective function must 

be a scalar function, and its numerical value can be obtained once the design 

variables are fixed. 

The weight of the structure is the most typical objective function in shape 

optimization, which can be expressed as 

f(X) = kpdn (2.5) 

where p is the density of the material, and the n is the domain occupied by 

the material. 

In addition to the weight, the objective function can also be: 

a) The maximum stress over part of the structural nc , i.e. 

f(X) = Max a(O (2.6) 

where a is the stress, and ~ E nco The stress a can be chosen as principle 

stress, Von Mises stress, etc. Such objective function is usually used for stress 

concentration problems. 

b) Average stress over part of the structural nc , 

(2.7) 

where a is the maximum stress, and aa is the average stress. This objective 

can be used to formulate a fully stressed structure design. 
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The design variables X are those parameters, which are used to describe a 

design and can be changed freely. In shape optimization problems, X are the 

parameters which define the boundary shape. The choice of design variables 

for shape optimization problems and the design boundary representations will 

be discussed in Chapter 5. 

All the restrictions on a design are called constraints. Equations (2.2) 

and (2.3) are inequality and equality constraints respectively, which must be 

satisfied for the final design. The number of equality constraints cannot exceed 

the number of design variables, and the number of inequality constraints can 

be arbitrary large. 

The most common constraints in shape optimization problems are: 

a) Stress constraints, for example the Von Mises stress over a structure should 

be less than the allowable stress 

b) Displacement constraints, i.e. the displacement should not exceed the pre

scribed value. 

c) Stiffness or compliance constraints 

d) Stability constraints (buckling) 

e) Vibration constraints (frequency) 

Equation (2.4) is side constraints that are used to limit the region of 

search for the optimum, where x" and xl are upper and lower bounds of design 

variables respectively. The introduction of side constraints are necessary for 

two reasons: 1) to prevent unreasonable or meaningless designs; for example, 

the thicknesses of a structure should always be positive 2) considerations of the 

manufacturing process; for example, the cross sections of a reinforced concrete 

beam cannot be too thin in order to stop steel corrosion (i.e. mInImum cover 

requirements). 

A design is defined as a feasible design if all constraints are satisfied. An 

infeasible design implies that one or more constraints are violated. By optimum 
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design, we mean a design which achieves a minimum objective, at the same 

time satisfies all the constraints. If an objective function has the smallest value 

in the whole feasible design region, it will be called global minimum. If the 

objective has the smallest value only in part of the feasible region, we call it 

local minimum. 

A constrained optimization problem is named as convex only if both the 

objective function and all the constraints are convex. A convex constrained 

problem has a single global minimum, and a non-convex problem may have 

several local minimum. Convexity can rarely be proved. Most structural 

optimization problems are non-convex, therefore the numerical optimization 

method will often lead to a local minimum. 

The theoretical necessary conditions at the optimum are referred to as 

the Kuhn-Tucker conditions [6), which are derived from the fact that the La

grangian function is stationary at the optimum. The Lagrangian function is 

defined as: 

M M+L 

L(X, A) = I(X) + I>jgj(X) + E Akhk(X) (2.8) 
j=l k=M+l 

where I(X), gj{X) and hkCX) are the objective and the constraints respectively 

as defined in (2.1) - (2.3), Aj and Ak are the Lagrangian multipliers. 

The following three conditions (Kuhn-Tucker conditions) are the necessary 

conditions for optimality: 

1) X is feasible. 

j = I,M 

These necessary conditions are also sufficient if the design space is convex. 

The Kuhn-Tucker conditions can be used to check the possible optimality of a 

design. 
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2.3 Mathematical Programming Methods 

There are two main approaches for solving structural optimization problems, 

the optimality criteria (OC) method and the mathematical programming (MP) 

method. The OC method derives the state conditions at the optimum based 

on the extreme principles, and then to updated the current design toward these 

state conditions. On the other hand, the MP method starts with the current 

design, and uses the information from the current design to find how to reduce 

the objective function and to satisfy the constraints. 

The MP method is more general than the OC method, especially for shape 

optimization in which the optimality conditions are difficult to formulate. 

Therefore the MP method is employed in the current research, and various 

MP methods will be discussed in the following. 

For a general shape optimization problem, both the objective function and 

the constraints are nonlinear functions of the design variables. It is nearly 

impossible to solve the set of nonlinear equations (2.1)-(2.4) analytically, so 

numerical methods must be used instead to obtain the optimum design, or in 

many cases, a local optimum design. The numerical optimization methods (MP 

methods) usually start with an initial design XO, then update the improved 

design using following iteration process: 

where p is the iteration number, Q' is a scalar parameter which specifies the 

movement of the design variables, and vector S is the search directions. The 

above optimization process will continue until no significant change in the 

objective function ( or no significant change in the design variables ), and all 

the constraints are satisfied. 

Various MP methods have been developed to solve the minimization prob

lem of equations (2.1)-(2.4) with iterative procedure. In the following, some 
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well established methods are described with some remarks. The optimization 

problem can be written in matrix form as 

Minimize: 

Subject to: 

f(X) 

G(X) ::; 0 

XL ::; X ::; XU 

(2.9) 

(2.10) 

(2.11) 

where X = [Xl ..... XnV, G = [g1,g2, ... ,gMV, xL and XU are the lower and 

upper limits of the design variables. Note in the above form we omit the 

equality equations in order to simplify the discussions. 

1) Sequential Linear Programming Method 

The most simple and popular approach to solve optimization problem (2.9) 

- (2.11) is to approximate the objective and the constraints by linear approxi

mation based on the Taylor expansion about Xo, which is called the sequential 

linear programming (SLP) method. By using the SLP method, the optimiza

tion problem (2.9) - (2.11) becomes: 

Minimize: 

Subject to: 

f(Xo) + \l f(Xof fiX 

G(Xo) + \lG(Xo) fiX ::; 0 

fiX L ::; fiX ::; oXu 

where oX are the changes of the design variables, i.e. 

oX = [Xl - x~, .... ,Xn - x~f 

j = I,M 

i = I,N 

(2.12) 

(2.13) 

(2.14 ) 

\l f and \lG are the gradients of the objective and constraints with respect to 

the design variables respectively, i.e. 

fu fu 
aXl ' •••• , aXn 

\lG(Xo) = 

~ ~ 
aXl aXn X=Xo 
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8f 8f T 
Vf(Xo) = [-8 , .... , -8 I !X=Xo 

Xl Xn 

6X Land DXu are the moving limits of the design variables. This linear prob-

lem can then be solved easily using the Simplex method or other standard 

optimization algorithms which are readily available. 

Since the nonlinear functions f(X) and G(X) are approximated by linear 

functions, the moving limits of the design variables must be imposed to prevent 

invalidation of the linear approximation. Otherwise the problem may have 

unbounded or oscillation solutions. 

The choice of the moving limits depends upon the experiences and the 

problems, and a trial and error process is required to find the best one suited 

to the problem. Generally speaking, the moving limits should decrease as the 

design approaches the optimum because the linear approximation needs to be 

more accurate when closing the optimum. The requirement for the adjustable 

moving limits is considered to be the main drawback of the SLP method. 

The design is converged if the following conditions are met: 

j = I,M 

i = I,N 

(2.15) 

(2.16) 

where 81 is the specified tolerance for the constraint violation, and the 82 is 

a specified small number. These two conditions imply that the iteration can 

be stopped when all the constraints are satisfied and there is nearly no design 

change any longer. Sometimes the equation (2.16) can be replaced by the 

convergence of the objective function, i.e. 

(2.17) 

where 8f presents the change of the objective function, and 83 is a prescribed 

value. 

Even though the SLP method is considered to be a poor optimization 

algorithm, the experience of many researchers has showed that it is often a 
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powerful and efficient method [8,9]. In this thesis, the SLP method is employed 

to solve shape optimization problems in Chapter 5. 

2) Sequential Quadratic Programming 

Sequential Quadratic Programming (SQP) method is a powerful method for 

a wide range of optimization problems. SQP creates a quadratic approximation 

of objective function, and a linear approximation for constraints. The standard 

form of SQP is: 

Minimize: (2.18) 

Subject to: 

G(Xo) + \7G(Xo)8X :::; 0 (2.19) 

where H is the Hessian matrix of the objective function. 

SQP is usually considered to be a better method than SLP from computa

tional accuracy and robustness viewpoints. Various modifications of the SQP 

can be found in [10, ll, 12]. 

3) Penalty Function Method 

A constrained optimization problem can be transformed into an equiva

lent unconstrained optimization problem by introducing an external penalty 

function. The new function to be minimized is: 

Minimize ¢(X, rp) = f(X) + rp L Max[gi(X) , 0]2 (2.20) 

where rp is called the penalty parameter. The function ¢ is minimized keep

ing rp constant, then rp will increase each iteration. There are other forms 

of penalty function, such as the interior penalty function, the extended inte

rior penalty function, the augmented lagrangian multiplier method, etc., more 

details of which can be found in [13] 
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4) Method of Feasible Direction 

The method of feasible direction starts with a feasible design, moving to 

an improved feasible design by choosing a feasible direction S, and a small 

step size o. The step size 0 is determined to reduce the objective function as 

much as possible, at the same time keeping the design feasible. If the design is 

inside the feasible region (no active constraints), the unconstrained techniques 

are used to generate the direction S. In the case of the design at the boundary 

of the feasible region, the direction S can be obtained by solving the following 

sub-problem [1, 14]: 

Maximize: 

Subject to: 

Vf(XfS + (3:S 0 

VgJS + OJ{3 :S 0 

STS:S 1 

jEJ 

(2.21 ) 

(2.22) 

(2.23) 

(2.24) 

where J is a potential constraint set, and OJ is called the push-off factor. OJ 

presents the angle between the moving direction and the tangential direction 

of the jth constraint. Equation (2.24) is used to bound the solution S. 

5) Sequential Convex Linearization Method 

This method first linearizes the objective and constraints as in SLP, then 

reciprocal variables are used to create a conservative convex approximation. 

Various approaches based on convex approximation have been developed, and 

proved to be very efficient for a wide range of optimization problems. The 

theory and applications of convex approximation method can be found in [15] 

Concluding Remarks 

The efficiency of the above numerical optimization problem depends on the 

type of problem to be solved. For one particuliLr problem, one method may 
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provide a faster convergence than the others, whereas in other cases it may fail 

to converge. Generally speaking, the choice of numerical optimization methods 

mainly depends on the following considerations: 

1. The number of design variables 

2. The properties of the objective function and the constraints, I.e. the 

smoothness and the order of nonlinearity. 

3. The highest level of derivatives of objective function and constraints 

available, with reasonable accuracy and cost. 

4. Robustness, efficiency, accuracy and reliability of the algorithm. 

As the optimum design problems become bigger, the cost of using numerical 

methods increases rapidly. Which method best suits general shape optimiza

tion problems is still an open question. Since engineering problems involves 

more and more complex analysis, the cost of optimum design will be huge. A 

lot of research is still needed to improve the reliability and the efficiency of the 

numerical algorithms. 
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Chapter 3 

The Boundary Element 

Method in Elastostatics 

3.1 Introduction 

This chapter introduces the basic theory and numerical aspects of the bound

ary element method in elastostatics which will be used later on as a numerical 

analysis tool for shape optimization. After a historical review of the bound

ary element method in elastostatics, the boundary element formulation for 

elasticity is presented, followed by the numerical implementation. Final con

cluding remarks discuss the advantages and drawbacks of the boundary ele

ment method over the finite element method in the field of structural analysis, 

especially in the application of shape optimum design. 
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3.2 Review of the Boundary Element Method 

in Elastostatics 

With the rapid developments of digital computers, many numerical techniques 

have been created to solve practical engineering problems. For the last two 

decades, one dominant numerical method is the finite element method (FEM). 

By discretizing the domain into small elements, and employing interpolation 

functions to approximate the distributions of the state variables (like displace

ments and stresses etc.), FEM can provide the solutions for a wide range of 

problems. 

Recently the boundary element method (BEM) has been recognized as an 

attractive alternative numerical method to FEM in engineering applications. 

Like FEM, BEM can solve various engineering problems, such as elastostatics, 

heat transfer, fluid, fracture mechanics and plasticity etc. The superior feature 

of BEM over FEM is that it only needs to discretize the boundary, which often 

leads to fewer elements and easier to use. 

Historically, the BEM has been developed using two different approaches: 

the direct formulation and the indirect formulation. 

Even though the theoretical considerations of the direct integral equation 

had been discussed by Kupradze [1], the direct formulation in terms of en

gineering applications was first introduced by Rizzo in 1967 [2], which was 

derived from Somigliana's identity. In this formulation, the unknowns are 

tractions and displacements on the boundaries, and the stresses and displace

ments inside the domain can be obtained from the numerical integration of the 

boundary tractions and boundary displacements. The pioneer works have been 

done by Jaswon, Maiti and Symm [3] using Airy stress function for plane elas

tostatics, Cruse [4] for three-dimensional elastostatics, Cruse and Rizzo [5] for 

elasto-dynamic problems, and Lachat [6] by introducing high order elements. 
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The indirect method introduces fictitious unknowns in the system equa

tion, which have no direct physical meaning. Once those fictitious unknowns 

have been computed, the real displacements and stresses can be obtained by 

boundary integration of the fictitious unknowns. The pioneer works of indi

rect method were due to Kupradze [1], Massonnet and Oliveira [7, 8]. Recent 

developments of indirect formulation can be seen in [9]-[11]. 

It should be mentioned that although the above two boundary element 

formulations are based on the same principle, i.e. representing the basic system 

equation by boundary variables, the solution procedures are quite different. 

The direct boundary element formulation has the advantage of being simple 

in concept, and easier for implementation, so it is the most widely used form 

in various applications. 

In the last decade, the numerical aspects and applications of BEM have 

been extensively studied. In the following, four important fields of BEM in 

elastostatics (or other related fields) are briefly discussed, with some key ref

erences. 

a) New formulations and fundamental solutions 

In addition to the two basic formulations (direct and indirect formulations), 

many others have been proposed for special purpose applications. Quinlan 

et al. [12, 13] presented a BEM-like edge-function method, in which special 

functions were chosen to match each edge of the boundary, and the final overall 

solutions were obtained as a superposition from each segment. Recently a new 

boundary element formulation has been developed for elasticity problems by 

Ghost et al. [14,15]. The basic state variables in this new formulation were the 

tractions and the gradients of the tangential displacements on the boundary. 

This formulation has the advantage of providing high accurate stresses near or 

on the boundary. 

Another new form of boundary element formulation is the complex variable 
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boundary element method, which has demonstrated its high accuracy and 

efficiency in many applications [16, 17]. However this approach is limited to 

two-dimensional problems only. 

The most widely used fundamental solutions in elastostatics are the Kelvin 

solutions. Other fundamental solutions have been used for some particular 

applications, which often lead to more accuracy and efficiency. For example, 

the semi-plane solutions (Mindlin's fundamental solutions) proposed by Telles 

and Brebbia [18] have been successfully used in the field of geomechanics, and 

the special fundamental solutions introduced by Snyder and Cruse [19] have 

been used for crack problems. 

b) Numerical integration 

Since boundary element equations are integral equations involving singular 

integrands (i.e. the fundamental solution becomes singular when the source 

point coincides with the integration point), the proper treatment of the singular 

integration has become essential in terms of numerical accuracy and efficiency. 

As analytical solutions for those singular integrations are not available for 

general problems, various numerical methods have been proposed to deal with 

the singularity. Subdivision is the simplest technique, in which the elements 

near the source point are divided into small integration regions to cope with 

the large variations [20, 21]. Another powerful method is to transform the 

integral variables such that the behaviour of the singularity becomes weaker, 

or in some cases be eliminated completely. The details on the transformation 

methods can be found in [22, 23] 

c) The domain integral transformation 

Some domain integrals may appear in the boundary element formulation 

representing body forces, nonlinear effects etc. There is no difficulty in dis

cretizing the domain into cells as in FEM, but it weakens the advantage of 
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BEM over FEM. Various approaches have been proposed to transform domain 

integrals into equivalent boundary integrals [24]-[26], so that the final bound

ary element equation involves only the boundary integral. 

d) Coupling of BEM and FEM 

For some engineering applications, coupling BEM and FEM can often pro

duce better accuracy and efficiency. For example, BEM can be used to model 

infinite domains, or stress concentrations, whereas FEM can be used to model 

nonlinear material regions. The general approaches of such combination have 

been widely investigated [27]-[30] including many practical applications. 

The development of BEM has led to a large quantity of publications in 

both academic researches and industrial applications. The boundary element 

reference book edited by Mackerle and Brebbia [31] covered the most important 

boundary element publications, as well as the software available. The basic 

theory and applications of BEM can be seen in the books by Brebbia [32], 

Banerjee and Butterfield [33], Crouch and Starfield [34], Brebbia, Telles and 

Wrobel [35], Brebbia and Dominguez [36], and Hartmann [37]. The recent 

advances on BEM can be referred to the conferences which were dedicated to 

the boundary element method [38]-[53]. 

3.3 The Boundary Element Method in Elas-

tostatics 

3.3.1 Basic Equations of Linear Elasticity 

The equilibrium equations of a linear elastic body are [54]: 

3 

Llrij,j + bi = 0 (3.1 ) 
j=l 
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where i = 1,2,3, aij are the components of the stress tensor and bi are the 

components of the body force. 

The tractions on the boundary are given by 

(3.2) 

where nj are the direction cosines of unit outward normal with respect to the 

axIS Xj' 

The stress tensor has the property of symmetry, so only six of the nine 

components are independent. The relations between strains and displacements 

can be expressed by: 

Cij = ~(aUi + aUj) 
2 aXj aXi 

(3.3) 

where i = 1,2,3, and j = 1,2,3. Cjj and Uj are strain tensor and displacement 

tensor respectively. 

The stress - strain relations can be expressed as: 

(3.4) 

where Ckk is the volumetric strain, i.e. t:kk = t:ll + C22 + t:33, f1 and), are the 

Lame's constants. 

6 is the Kronecher delta, and is defined as: 

if i = j 

if i -; j 

The Lame's constants f1 and), can be related to Young's modulus E, Pois

son's ratio v and Shear modulus G, i.e. 

E 
f1 = G = 2(1 + v) 

). = vE 
(1 + v)(l - 2v) 
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3.3.2 The Boundary Integral Formulation of Elasticity 

The boundary integral formulation of elasticity can be derived by either weighted 

residual method, or reciprocal work theorem as shown by Brebbia [32] and 

Rizzo [2] respectively. In the following, the weighted residual method is used 

for the derivation of the basic formulation of BEM in elastostatics. 

Consider an elastic body with domain fl, and bounded by 7} and 72 as 

shown in Fig. 3.1. Recall the basic equilibrium equation: 
3 

LO"kj,j + bk = 0 (3.5) 
j=} 

under the boundary conditions: 

on 7} 

Pk (3.6) 

Assume a weight function u*, and let the weighted residual equals zero, we 

get 

If we integrate the first term of equation (3.7) by parts twice, then: 

k(O"kj,jUk + bkUk)dfl = -lPkukd7 + lPkukd7 

(3.7) 

(3.8) 

The weighting function can be any solution which satisfy the equilibrium 

equation. The most common weighting function used in BEM is the fundamen

tal solution corresponding to a unit force vector acting in the infinite domain. 

The fundamental solutions satisfy the equation 

(3.9) 

Substituting (3.9) into (3.8) and applying the property of the Dirac Delta 

function, finally we get the general integral equation: 

(3.10) 
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where ui -displacement at an internal point. 

p* , u*-fundamental solutions 

b-body force 

The fundamental solutions for plane strain linear isotropic material are: 

1 8r 8r 
8 G( )[(3-4v)ln(1/r)olk+-8 -8 ] 

7r 1 - V Xl Xk 
(3.11) 

1 8r 8r8r 
4 G(l ) [-8 {(1- 2V)Okl + 2-8 -8 } 

7r - V r n Xk Xl 
8r 8r 

- (1 - 2v)(-nk - -nJ)] 
8Xl 8Xk 

(3.12) 

The fundamental solutions for plane stress can be obtained by the following 

substitution of Poisson's ratio and Young's modulus 

v 
v +-+--

l+v 

and the fundamental solutions for 3-D elasticity can be found in any standard 

boundary element text book (such as by Brebbia et al.[35]). 

If the point is on the boundary, the equation (3.10) is modified by taking 

a limiting process, and the final expression is 

(3.13) 

The parameter CJk equals to Olk + dlk , where Olk is an identity matrix, and 

dlk comes from the procedure of taking the source point of equation (3.10) into 

the boundary. For a smooth boundary, dlk = -1/2olk . When the boundary is 

not smooth, such as corners, the dlk can be calculated by the following formula 

[36]: 

where the definition of 'h and (}2 are shown in Fig. 3.2. 
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3.3.3 Numerical Implementation of the Boundary El

ement Method 

Consider a two dimensional elastic body with J{ nodes on the boundary, then 

we can have 2J{ equations by placing the point i on each boundary node in two 

directions. Since each node has four degree of freedom, i.e. two tractions and 

two displacements, there are totally 4J{ state variables on the boundary. By 

specifying two of the state variavles (either traction or displacement) at each 

node, the remaining 2J{ unknown state variables can be computed by solving 

the 2I{ integral equations. 

The 2J{ integral equations usually can not be solved analytically, instead 

a numerical method (i.e. BEM) must be used. The numerical implementation 

of the BEM in 2-D elasticity is presented as follows, 

Step 1 Boundary Discretization 

The boundary T is divided into N elements. Within each element, the 

traction P and displacement u are assumed to vary according to certain in

terpolation functions. By introducing interpolation functions, u and P at any 

point of the element can be expressed by the interpolation functions and the 

nodal values, i.e. 

M 

u(O = L ¢i(~)Ui 
i 

M 

p(O = L¢i(OPi (3.14) 
i 

where ~ is the local coordinate, M is the number of nodal points on one el

ement, and ¢ are the interpolation functions. Ui and Pi are nodal values of 

displacements and tractions respectively. 

The most common interpolation functions in BEM are polynomial functions 

of order O,l,and 2. The zero order polynomial function generates the constant 

element, i.e. both traction and displacement are constant over each element. 
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The zero order interpolation function can be expressed as 

4>(1) = 1 (3.15) 

Since very rare problems have piecewise uniform displacements and trac

tions, the constant elements are not recommended. 

The first order polynomal function generates linear elements, i.e. 

4>(1) = (1 - 0/2 

4>(2) = (1 + 0/2 (3.16) 

The second order polynomial functions are the most widely used interpola

tion functions in BEM, which are called quadratic functions, and the elements 

with quadratic interpolation functions are defined as quadratic elements. The 

quadratic interpolation functions can be written as: 

4>(1) ~(~ - 1)/2 

4>(2) 1 - e 
4>(3) ~(~ + 1)/2 (3.17) 

Figure 3.3 shows the variations of the three different elements under the local 

coordinate. 

The linear and quadratic elements discussed above are called continuous 

elements, because their external nodes are shared by adjacent elements. An

other type of elements often used are the discontinuous elements, in which 

the external nodes are not shared by adjacent elements. The advantages of 

using discontinuous elements are: 1) the discontinuous elements can be used 

where there is a sudden change of geometry or boundary condition, whereas 

in the case of continuous elements, special treatments are needed (like double 

nodes for corners). 2) the solutions at the common node from the two adjacent 

discontinuous elements are usually different. This difference can be used as a 
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simple check to see whether the mesh is fine enough. The main drawback of 

the discontinuous elements is that it introduces more variables and unknowns. 

Fig. 3.4 shows the different discontinuous quadratic elements. 

The following matrices are introduced in order to simplify the notations. 

The c i and the displacements at the node i 

(3.18) 

The fundamental solutions: 

(3.19) 

The vectors of displacements and tractions: 

(3.20) 

The interpolation functions (for quadratic element): 

o 4>(2) 

4>( 1) 0 

o 4>(3) 0 1 
4>(2) 0 4>(3) 

(3.21 ) 

Then equation (3.13) becomes: 

(3.22) 

Taking (3.14) into (3.22), therefore 
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where uj denotes the nodal displacement vector, i.e. U j = [u~, u~, u~, u~, u~, u~], 

and pj is the nodal traction vector, pj = W, p~ ,p~ ,p~, p~, p~]. 

Note that the integration of the body force term is carried out by dividing 

the domain into M small cells, in which the distribution of the body force can 

be approximated over each cells. In some cases, the domain integral of the 

body force term can be transformed to the boundary integrals as shown in 

[24]-[26]. 

The above formula presents the relations between discretized displacements 

and tractions when source point is at a boundary node i. 

Step 2 Assembling Global Matrices 

For each source point, we have two equations as shown in (3.23). Consider 

total f{ nodes on the boundary, by placing source point onto each node, there 

will be 2 X f{ equations. After transforming the local coordinates into global 

coordinates, all the 2 x f{ equations can be assembled into the following matrix 

form: 

(3.24) 

Where U and P are boundary displacement and traction vectors 

Hand G are influence matrices which are the integral of the fundaHlental 

solutions and interpolation functions over the boundary elements. 

Step 3 Applying Boundary Conditions 

At each node, there are four variables, i.e. two displacements and two 

tractions. After specifying the two known boundary conditions, there will be 

2 X f{ unknowns which equals to the number of equations. By rearranging 

matrices Hand G so that all unknowns are on the left hand side, therefore 

the final system equation can be written in the form: 

AX=F (3.25) 
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Step 4 Boundary and Domain Solutions 

After solving the system equation (3.25), all boundary displacements and 

tractions are known. The stresses on the boundary can be easily computed 

under local coordinates (Fig. 3.5), for plane-strain: 

Pn 
I 

--(va22 + 2f.le11) I-v 

(3.26) 

where Pt and Pn are components of boundary tractions along tangential and 

normal direction respectively. ell is the gradient of the tangential displace

ment, i.e. ell = au.las. 

The internal displacements can be obtained by (3.10), i.e. 

N N M 

u i = LJl U·-I>dT}pj - L{L p*-I>dT}Uj + L 1 u*bdn 
j '] j IJ S O:!j 

(3.27) 

The internal stresses can be calculated by differentiating the displacement 

expression (3.27) and using the stress-strain relations [35], i.e. 

(3.28) 

where Pk and Uk are boundary traction and displacement respectively. 

For 2-D problem, 

1 
Dk·· = {(I - 2V)[Dk-r . + Dk·r . - D· -r k] + 2r·r -r k} 

'J 47r( 1 _ v)r • ,J J " 'J, " ,J , 
(3.29) 

and 

f.l ar 
27r(1 _ v)r2 {2 an [(1 - 2v)Dijr,k + v(Dikr,j + Djkr,i - 4r,i r ,jr,k] 

+ 2v(nir ,jr,k + njr,ir,k) 

(3.30) 

where f.l and v are shear modulus and Poisson's ratio respectively, and the 

commas denote the derivatives. 
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The above 4 steps cover the basic numerical implementation of BEM. Fig. 

3.6 shows a flow chart for a typical BEM analysis program. 

3.4 Concluding Remarks 

In engineering applications, both FEM and BEM have established their own 

strength and merits as numerical methods, on the other hand, both of them 

still possess some drawbacks. In the following, a comparision between FEM 

and BEM is presented, with special references for the application of shape 

optimization. 

1) Theoretically, both FEM and BEM are based on the same kind weighted 

residual methods [55]. The approximation procedure of both methods are 

nearly the same, i.e. by introducing interpolation functions over each element 

to approximate the distribution of state variables. The main difference is the 

choice of the weighting functions. 

2) As a domain method, FEM needs discretization of the whole domain, 

which usually leads to large number of unknowns (therefore a larger system 

equation). BEM needs only the discretization of the boundary, so the un

knowns are far less than by FEM. This feature of BEM enables the user to 

use less input data, provides an easier modelling, and easier presentation for 

CAD. This advantage of BEM over FEM has significant importance for shape 

optimization, because the design variables are boundary geometry parameters 

which can be implemented into boundary element modelling with little cost, 

and also easier for remeshing during design process. On the other hand, the 

remeshing for FEM is very expensive, especially for three-dimensional cases. 

3) The solutions by BEM, like boundary stresses, are more accurate than 

by FEM, especially near the place of stress concentration. This feature is 

very important for shape optimization in which the stresses are often used 
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to measure the performance of a structure, and for shape design sensitivity 

calculation. 

4) BEM is more efficient for infinite domain problems, and FEM is more 

efficient for nonlinear, anisotropic materials. Generally speaking, FEM covers 

more engineering applications than BEM at present, but this might change 

with the development of BEM. 

5) The final system equation of both FEM and BEM has the same form, 

i.e. AX = B. The left hand side matrix A in FEM is symmetric and sparse, 

whereas A in BEM is a fully populated nonsymmetric matrix, therefore the 

computation cost for solving a system of the same number unknowns in FEM 

is far less than in BEM. This is the one main motivation for the combination 

of FEM and BEM in some applications. 
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Chapter 4 

Shape Design Sensitivity 

Analysis using the Boundary 

Element Method 

4.1 Introduction 

The mathematical programming (MP) methods for shape optimization are it

erative methods, in which the designs are modified successively until all the 

criteria are satisfied. A key issue during the design modification is to predict 

how the response of the structure changes due to the shape change of the struc

ture. This information is called shape design sensitivity, which is defined as 

the rates of change of structural responses with respect to the design variables. 

It is essential to provide accurate design sensitivity information in order to use 

those MP methods discussed in Chapter 2. 

The order of the sensitivity equals to the order of the derivative of the 

structural response. For example the first order design sensitivity of a struc

tural response f with respect to the design variable b is defined as df jdb, and 

the second order design sensitivity as d? f jdb2 
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The use of second order design sensitivity can often result in faster conver

gence, but most of the numerical algorithms described in chapter 2 need first 

order sensitivities only. This is mainly because it is far easier to compute the 

first order design sensitivity than the second order sensitivity. This thesis only 

concerns the first order shape design sensitivity, which will be simply called 

design sensitivity throughout the thesis except those places specially indicated. 

The evaluation of the design sensitivity has become an important research 

topic for the last two decades since the success of MP methods for solving shape 

optimization problems often depends upon the way to calculate the design 

sensitivity, i.e. which method, how accurate and how easier (efficiency). 

The main task of this chapter is to investigate different numerical ap

proaches to design sensitivity calculation, and to develop more efficient and 

accurate approaches for 2-D elasticity. First the two basic approaches for 

design sensitivity, namely the continuum approach (CA) and the discretized 

approach (DA), are presented and compared. The CA is then used to derive 

the stress sensitivity formulation based on BEM. The main difficulty of the CA 

method, the appearance of the singular adjoint loads of the adjoint problem, 

is discussed. The term singular loads imply that the loads are concentrated 

forces, i.e. point forces. 

Two approaches are developed to model the adjoint problem, one uses 

the distributed loads to replace the singular loads, and the other one employs 

the singularity subtraction method to remove the singular loads from the BEM 

equation. Both methods are proved to be more accurate than using the singular 

loads directly. 

The total finite difference method has two drawbacks; 1) the computa

tion cost is usually higher, 2) the accuracy of the approach often depends on 

the choice of the perturbation step. A new finite difference based method 
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is developed, which has the advantage of being simple in concept and eas

ier implementation, and overcomes the two drawbacks of the finite difference 

method. 

A few test examples are used to demonstrate the accuracy of the proposed 

formulations, and the comparisons are made with different meshes to study 

the influence of the mesh refinements on the accuracy of design sensitivity. 

4.2 Two Basic Approaches for Design Sensi-

tivity Analysis 

4.2.1 The Discretized Approach (DA) 

The various numerical methods for design sensitivity analysis can be cata

logued into two classes, the discretized approach (DA) and the continuum 

approach (CA). In the following, the basic formulations and the numerical 

characteristics of these two methods are presented. 

The discretized approach starts with the discretized system equation. For 

example if BEM is used for analysis, the final system equation can be written 

in matrix form 

AX=BY+P (4.1 ) 

where A and B are influence matrices, X is a vector containing the unknown 

boundary displacements and tractions, Y is the vector of prescribed boundary 

displacements and tractions, and P is the vector of the prescribed body force. 

Differentiating equation (4.1) with respect to a design variable b;, we have 

A ax = aBy _ aAX + B ay + ap 
abi abi abi abi abi 

(4.2) 

The above formula provides the traction and displacement sensitivities on 
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the boundary. The stress sensitivities can be obtained by further differentiating 

the displacement sensitivity, and employing the stress-strain relationship as 

shown in [1]. 

It is noted that equation (4.2) has the same left hand matrix as the initial 

system equation (4.1), so a simple forward and back substitutions can be 

used for solving the equation. In order to solve equation (4.2), we must 

evaluate each term in right hand side of the equation. The main computation 

cost for this evaluation is from the first two terms because they involve the 

differentiation of matrices, whereas the last two terms need the differentiation 

of the vectors only. In practical problems the last two terms are often zero. 

The first two terms in the right hand side present the differentiation of 

influence matrices, which will involve the differentiation of fundamental so

lutions. This evaluation can be performed either analytically, or numerically. 

The analytical differentiation will produce new kernels, which needs significant 

program development for those new functions as discussed by Kane [2]. The 

finite difference method is the most popular one, in which the design boundary 

is disturbed by a small quantity 8, and the derivatives of matrices A and B 

are calculated by finite difference formula. 

Another discretized method is the total finite difference method, in which 

the sensitivity is obtained by direct application of the finite difference formula 

on the solutions of the initial structure and the disturbed structure. Assuming 

the initial problem has the form: 

(4.3) 

where bo denotes the design variable at the initial design, which will define the 

initial boundary geometry, and X are the solutions of the initial problem. 

By disturbing the initial geometry by 8b, we have 

A(bo + 8b)X(bo + 8b) = C(bo + 8b) ( 4.4) 
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Solving equations of (4.3) and (4.4), and employing the finite difference 

formula, we can obtain the sensitivity as: 

_dX ""' _X-,-( b..:..o _+_li~b )_-_X_(,-bo~) 
db - lib (4.5) 

4.2.2 The Continuum Approach (CA) 

Unlike the discretized approach, the continuum approach evaluates the design 

sensitivity before numerical discretization, so the formulation is exact. The 

basic concepts and formulations are presented as following, more details can 

be found in [3, 51. 

Material derivative 

Consider a domain n bounded by T. Defining a transformation field T(X, t), 

so that the point X pass to the point X*. i.e. P ---7 po: X* = X + 1iX. The 

material derivative of a smooth solution u of an elastic equation is defined as: 

,..., 1 . 1 d·· Du ou '" ou V J.ota matena envatIve = -D = -0 + L.i -0 j 
t t j Xj 

or alternatively (4.6) can be written as: 

it = u' + (V'u? . V 

(4.6) 

(4.7) 

where it denotes the (total) material derivative of u, u' is the partial derivative 

of u, which presents the change of u with fixed coordinates. V'u is the gradient 

of u in the space, V'u = [OU/OXI , OU/OX2V, V = [Vi, V2V, Vi and V2 are 

components of the velocity field in Xl and X2 directions respectively. 

The material derivative operator 

DOT 
- = -+V .V' 
Dt ot 

(4.8) 

can be applied to a scalar, a vector, or a tensor function of X and t [61. In this 

thesis, the notation of equation (4.7) will be used. 
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The material derivatives of two basic integrals are given below, the detailed 

derivations can be found in [3]. 

Consider a domain functional rPl over 0, i.e. 

(4.9) 

The material derivative of rPl is: 

(4.10) 

where Vn is the normal component of the velocity field, i.e. Vn = V T ·n. 

Next, consider a functional defined as an integral over T, i.e. 

(4.11 ) 

Then the material derivative of rP2 is: 

~2 = 1[/ + (\7 ff·V + f(HVn + V.,s)]dT (4.12) 

where H is the curvature of the boundary T, and v.,s is the gradient of tan

gential velocity. 

It should be mentioned here that the material derivative of a function rP 
presents the variation of rP, not the derivative of </>, i.e. ~ = rP(x + ox, t + Di)

rP(x, t). This can be seen clearly by the following example. Consider an area 

A defined as: 

</> = L dO 

then the material derivative of </> can be obtained by using (4.10), 

(4.13) 

where oA is the change of area due to the boundary perturbation, not the rate 

of the change. But as V is the function of design variables, so the material 
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derivative can be parameterized into design sensitivity. In the following, we 

will refer the material derivative as sensitivity in a general sense, and the trans

formation from the material derivative to design sensitivity will be presented 

in 4.4.2. 

The relationship between the material derivative and the design 

boundary perturbation 

Consider an equilibrium body occupying the domain n which is bounded 

by T. The equilibrium equations are 

O"ij,j + bi = 0 (4.14) 

where O"ij is the stress tensor, and the bi is the component of the body force. 

Consider another equilibrium state with solution A as the displacement, 

where A = [AI, A2, A3]T. Multiply A to the equation (4.14), and integrate over 

n, we have 

( 4.15) 

Integrate the first term of equation (4.15) by parts, and note the boundary 

traction ti = O"ijnj, we obtain the work theorem 

( 4.16) 

where Ui, O"ij( u), bi and t; are displacement, stress, body force and boundary 

traction of the initial problem respectively, and A and e(A) are displacement 

and strain of another equilibrium state, which is named as the adjoint problem 

here. This adjoint problem has the same domain with the initial problem but 

with different boundary conditions. 

Taking material derivative of equation (4.16) and using the formula (4.12), 

we have 
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= 10 (b:Ai + biA:)dQ + 1 biA; Vndr 

+ l[ijA; + t).i + t;Aj(HVn + V. .• )]dr ( 4.17) 

Assuming that body force is constant, i.e. b' = O. The adjoint field can be 

chosen such that j = o. The partial derivatives of the stress and strain can be 

expressed as: 

( 4.18) 

(4.19) 

Substituting (4.18) and (4.19) into equation (4.17). After rearrangement, 

we obtain: 

1o[(J'jj(VT.'\lU)c(A) + (J'jj(u)c;j(VT.'\l )')]dQ 

10 b;VT.'\lAdQ + l[ti)'; + b;A;Vn]dr 

+ l[t;A;(VnH + v. .• ) - (J'jj(u)cij(A)Vn]dr (4.20) 

Equation (4.20) provides a general relationship between the material deriva

tive (left hand side) and the design perturbation (right hand side), which will 

be used later on to derive material derivative formulations for displacement 

and stress sensitivities. 

Material derivative of displacements 

Assuming an initial boundary value problem under following boundary 

conditions: 

U o on 

t = p on (4.21 ) 

Now consider a displacement constraint u at a fixed point xo, Xo E Q, i.e. 

¢ = 10 t5( x - xo)udQ ( 4.22) 
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where S is the Dirac delta function. 

Taking the material derivative of equation (4.22), 

(4.23) 

Defining an adjoint problem under following boundary conditions: 

u = 0 on 7} 
(4.24) 

where Pa is a unit force, and Pati(X - xo) presents a unit force at point Xo. This 

adjoint problem is very simple as the only external load is the point load on 

xo· 

If we consider equation (4.14) for adjoint problem, and multiply the dis

placements of the initial problem, then the work theorem (4.16) becomes 

(4.25) 

Since the equation (4.15) is true for any multiplier u, by substituting u = u' 

and noting In 0"( u )e( A )dn = In O"(). )e( u )dn, we get 

in O"(u')e(A)dn = inPa8(x - xo)u'dn ( 4.26) 

Taking (4.26) into (4.23), using the relations (4.18) and noting Pa = 1, 

we have 

<P = in 8(x - xo)u'dn 

= in O"(u')e(A)dn 

in O"(u)e()')dn - in O"(VT·VU)e(A)dn 

Substituting (4.20) into above equation, we obtain 

~ in[O";j(u)e;j(VT.V).) - biVT.VAjdn 

(4.27) 

+ l[i;A; + bi).;Vn + t;A;(VnH + V.,s) - O";j(U)eij().)Vn)jdr (4.28) 
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where ti denotes the change of initial loads, and the other notations are the 

same as before. 

In order to use BEM in analysis, the domain integral in above equation 

needs to be transformed into boundary integral. This can be done by substi

tuting A with VT·V'A in equation (4.16), finally the material derivative of the 

displacement is obtained as 

1 T . 
¢J T [ti V . V' A + tiAi + biAi Vn]dT 

+ l[tiAi(VnH + Va,s) - O"ij(U)t:ij(A)Vn)]dT (4.29) 

The material derivative of stresses can be obtained in the similar way as 

the material derivative of displacements, which will be discussed in the next 

section. The numerical procedure of the continuum method is summarized as 

follows: 

1. Solve the initial problem. 

2. Formulate the adjoint problem. 

3. Solve the adjoint problem. Note that the adjoint problem can be treated 

as a special load case of the initial problem. The left hand side matrix 

of the adjoint problem is the same as the initial problem, so the back 

substitution technique can be used to solve the adjoint equation. 

4. Use the formula (4.29) to compute the material derivatives. 

4.2.3 Comparisons of the Two Approaches 

The following comparisons are based on general observations. In practice, 

which is the best method often depends on the nature of the problem itself, as 

well as how it is implemented. 
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a) The numerical implementation of the CA is relatively easier than the dis

cretized method. This is because that the CA only involves one more extra 

load case for each constraint, whereas the DA needs either to disturb the design 

boundary or to implement some analytical formula to deal with the derivative 

of the matrix. 

b) Theoretically, the CA is an exact formulation, which is expected to give 

better results than the approximation formula DA. But as the adjoint problem 

in the CA has concentrated adjoint loads, a unsuitable treatment of the adjoint 

loads will lead to poor accuracy. If finite different method is used in DA, the 

choice of perturbation step is crucial for the accuracy. 

c) The CA requires one analysis for each constraint, whereas the DA needs 

one analysis for each design variable. If the active constraints are less than the 

design variables, then CA will require less computing time than DA. 

d) The computing time for total finite difference method is often very high, 

due to the requirement of forming new influence matrices of A and B. 

4.3 The Implementation of the Material Deriva-

tive of Displacements 

The displacement material derivative formula (4.29) can be written as 

(4.30) 

where 

1 T . 
<P2 [i;V ·V), + ti).i + bi).iVn]dT 

T 

+ l[ii).i(VnH + 11. .• ) 
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<PI presents the displacement change with the applied loads fixed, and <P2 

presents the displacement change due to the variations of the applied loads. 

If we assume the design boundary is traction free, and omit the body force, 

the equation (4.29) becomes: 

(4.31 ) 

For both applied loads and the adjoint loads, the conventional boundary 

element method can be used to calculate the stress a(u) and the strain c:().). 

This calculation is very simple for the adjoint problem due to three reasons: 

a) The only external load is a unit load which can be treated as a body 

force, there is no integral involved in the calculation of the body force term B. 

b) The final adjoint equation has the same left hand side matrix with the 

initial applied load equation, therefore the solution of the adjoint equation 

can be obtained using the already factorized sets of equations of the initial 

problem. 

c) All the constraints can be calculated in one process. For example, if m 

displacement material derivatives are required, all body force vectors form a 

new matrix B, Therefore we can solve the equations as AX = B. 

Fig. 4.1 shows an example of a cantilever beam, and the design boundary 

is upper surface. Fig. 4.1(a) presents the initial problem under the applied 

loads, and Fig. 4.1(b) presents the adjoint problem under the adjoint loads. 

The corresponding displacement material derivative is the displacement at c. 

The material derivative formula (4.31) is for an isolated fixed point. If we 

consider the point moving ( such as the design boundary points), then there 

will be one more term which corresponds to the variation of displacement along 

the space. i.e., 

(4.32) 
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where V = [VI , v;V, VI and V; are the components of the velocity field in Xl 

and X2 directions respectively. Vu are the gradients of the displacements, and 

\7u = [aU/aXI, aU/aX2]' 

As the boundary movement V is very small in the sensitivity analysis, the 

actual position of the boundary after moving can be treated as two steps, first 

moving along the normal direction of the boundary, then in the tangential 

direction. This can be seen from Fig. 4.2, where the design boundary TO 

moves vertically to TI' The point a on the design boundary will move to b. 

The corresponding normal direction movement is to c. As V is so small, we 

can assume the point a moving to c first, then moving tangentially to b, i.e. 

V = V n + V.. In the following derivation, the design perturbation will be 

always assumed to move in Vn and V. directions. 

Usually the point required for displacement sensitivity is on the boundary, 

in this case, the extra term can be expressed as: 

VT . V U = Ui,s V. + Ui,n Vn ( 4.33) 

where Ui,s , Ui,n are the gradients of the displacement Ui in tangential and nor

mal directions respectively. Si and ni are the direction cosines of the tangential 

and the normal vectors with respect to i direction respectively. 

The Ui,s can be calculated from the boundary solutions of the initial prob

lem, i.e., 

(4.34) 

where Us,s and Un,s are the tangential derivatives of the components of the 

displacement Ui. 

The Ui,n can be also obtained from the boundary information only [4], in 
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the case of plane stress, we have 

1 - V 2 Ps 
Ui,n = [~Pn - vUs,sln; + [G - un,slsi (4.35) 

where Pn and Ps denote the boundary tractions in normal and tangential di

rections respectively, E, G and v are Young's modulus, shear modulus and 

Poisson '8 ratio respectively. 

4.4 Stress Sensitivity Analysis by CA 

4.4.1 A Simple Case 

One of the most common constraints in shape optimization is the stress. For 

2-D elastic problems, the maximum stress is often on the boundary, so the 

boundary stress sensitivity analysis is very important. In the following, the 

boundary stress sensitivity for a simple case is derived first, then the general 

formulation of stress sensitivity is developed next. 

Consider a two dimensional elastic body with domain n and bounded by 

T, T = T1 + T2 + T3 + Te , where T1 is the kinematically fixed boundary, T2 is the 

loading boundary, Te is a traction free straight boundary in which the stress 

constraint is required, and T3 is the traction free design boundary. 

Consider an average stress constraint on Te defined as: 

(4.36) 

where Ie is the length of the Te, me is a characteristic function which is one in 

Te and zero otherwise, Ut is the Von Mises stress. For a traction free boundary, 

the Von Mises stress equals to the tangential stress, i.e. Ut = DUt,t, Ut,t is the 

derivative of tangential displacement. D = 2G/(1 - v) for plane strain, G and 

v are shear modulus and Poisson's ratio respectively. 
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Taking the material derivative of equation (4.36), and noting 

( 4.37) 

therefore 

( 4.38) 

Because the partial derivative with respect to time can commutes with 

partial derivative with X, i.e. 

(4.39) 

so 

I = D~(au) 
at as at ( 4.40) 

Due to the assumption that the constraint area le is fixed, the second term 

of equation (4.38) is zero, therefore 

(4.41 ) 

where u:1 and u:2 denote the material derivatives of displacements at the end 

of le in tangential directions. 

Equation (4.41) shows that the material derivative of a stress function is 

related with the difference of the material derivatives of the tangential dis

placements, which is similar to the relation a = Daujas. 

By defining an adjoint problem, we can transform the partial derivative of 

the displacement by boundary information only. i.e. 

( 4.42) 

finally: 

( 4.43) 
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The adjoint problem is governed by the following boundary conditions: 

u=o on T1 

p=o on T2 U T3 (4.44) 

p = 8(x - Xi) on Te i = 1,2 

The only loads are two point loads acting at the end of Te along the tan

gential direction (opposite). Note that equation (4.42) does not include the 

<P2 term of equation (4.30) in order to simplify the discussion. The numerical 

implementation of the stress sensitivity can be carried out in the same way 

as for displacement sensitivity discussed before, but the following points need 

special attention: 

a) The adjoint loads are two point loads in opposite direction, which pro

duce a stronger singular strain field near the loading area. 

b) As the stress sensitivity is obtained by finite difference method, so the 

area te can not be too big in order to get accurate approximation. If te ap

proaches to zero length, the sensitivity will present the sensitivity at a point. 

c) The accuracy of the stress sensitivity will depend on both the initial 

problem and the adjoint problem. For a well posed initial problem, the so

lutions of the initial problem are usually accurate. As the adjoint problem 

involves singular loads, how to obtain good solutions of the adjoint problem is 

very crucial. The special techniques for dealing with the adjoint problem will 

be discussed in sections 4.5 and 4.6. 

4.4.2 The Stress Sensitivity Formulation for the Gen

eral Case 

The formula (4.43) in last section is valid only for the constraint on flat 

undesigned boundary. In this section, a general formula is derived, which 
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takes account the following boundary conditions: a) all the boundary of the 

problem can be curved, b) the stress constraint is on the traction boundary, 

c) the kinematic boundary is fixed, d) no body force, e) the design boundary 

is traction free. The limitations of d) and e) can be left by modifying the ¢2 

of equation (4.30). 

Similar as last section, consider an average stress constraint on the bound-

ary defined as: 

¢ = * 1 mc!(cr)dr (4.45 ) 

f(cr) is a stress measure, such as the maximum stress or the Von Mises stress. 

For a general traction boundary, f can be expressed in terms of, tangential 

stress crt, normal and tangential tractions Pn, P., i.e., f = f(crt,Pn,P.)· 

Taking the material derivative of the (4.45), we obtain 

-1 fmcdr ·1 mc(VnH + V. .• )dr} 

1 1 {af . af. af. }d 
= -z me -a at + -a Pn + -a P. r 

c T crt Pn P. 

+ 1 mc(Vn H + v. .• ) . (f - ¢)dr ( 4.46) 

The va.riations of boundary tractions Pn and P. can be computed once we 

know the nature of the loads. For example if a hydraulic load is applied on 

the constraint boundary, then P. = 0, and Pn is the pressure change due to 

the boundary variation. At present constant tractions for both normal and 

tangential directions are assumed, i.e. Pn = 0, P. = o. 

For general curved boundaries, a convenient way to model the boundary is 

by the polar coordinates, thus the boundary tangential stress can be expressed 

as (for plane strain): 

V (U r au. v 
crt = Dee + --Pn = D - + -) + --Pn 

1 - v r raf) 1 - v 
(4.47) 
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where Ur and Us are normal and tangential displacements, Pn is the normal 

traction. 

Taking material derivative of at, 

at = a; + at,n Vn + at,. Vs 
1, 1 a I 

= D[;:ur + ;: 00 (us)l 

+Dv'I\:[-Ur _ ~ au. +! OUr +! a2u. l 
n r2 r2 00 r Or r arao 

In polar coordinates, we have the following relations (stress-strain): 

OUr 1 V 
-(Pn - --ad 

ar D I-v 

au. P. U. aUr 
ar = -+---

G r rOO 

Substituting (4.48) into (4.46), and using (4.49), we obtain 

. 11 af 1, au: 
ifJ = -1 me-a D[-ur + aoldT 

e T at r r 

( 4.48) 

( 4.49) 

1 1 af Ur 1 v 2 aps 1 a2 ur +- me-DY;.I\:[-- + -(Pn - --at + ----) - --ldT 
Ie T aat r2 r D 1 - v 1 - V ao r2 a20 

11 af +-1 me-a [at,nVn + at,.ValdT 
e T at 

+~ 1 me(VnH + Va,.)(J -ifJ)dT 

= ifJa + ifJb (4.50) 

where 
1 1 af [1, au: 

ifJa = -1 me-a D -ur + aoldT 
e T at r r 

ifJb is the rest terms of equation (4.50), and I\: = 1 if the boundary is convex, 

and equals -1 otherwise. Other notations are the same as before. 

It can be seen from equation (4.50) that ifJb is the function of initial problem 

and design velocity only. Once the initial problem has been solved and the 
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design boundary perturbation is given, 4>b can be calculated directly. The 

contribution of 4>b comes from two parts: a) the movement of the constraint 

along space; b) the change of the constraint area. 4>b only appears if the 

constraint is on the design boundary, otherwise it equals to zero. 

4>a presents the stress change at the fixed area. Same as before, this can be 

obtained by defining an adjoint problem with displacement solution >., then: 

11 8j 1 I au~ 
4>a = -I meD-8 [-ur + _aoldT 

e r at r 7 

(4.51 ) 

where Td denotes the design boundary. aj /aat has been assumed to be con

stant during the derivation. 

The difference between the equation (4.51) and (4.43) is that there is one 

more term if the boundaries are curved. The extra term in equation (4.51) 

corresponds to the normal displacement sensitivity, therefore the adjoint loads 

include two parts: the first part is two point loads at the end of Ie along 

tangential opposite directions, and the second part is a uniform traction along 

normal direction with magnitude l/r. The combination of the total adjoint 

loads for curved boundaries is shown in Fig. 4.3(a). If the curvature of the 

loaded element is small, we can prove that the above adjoint loads will statically 

equal to the straight boundary case as shown in Fig. 4.3(b). 

As can be seen from equations (4.50) and (4.51) that the material deriva

tive is the function of the velocity field. As the velocity field is related with 

the changes of the design variables, the material derivative can be transformed 

into design sensitivity. Given a design perturbation c5b, the design sensitivity 

of a stress constraint 4> defined in (4.45) is 

d4> = lim t 
db 6b-O c5b 

(4.52) 
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where ;p is the total material derivative. 

The components of the velocity field Vn , Va can be generally written as 

(4.53) 

where In and fs are interpolation functions in normal and tangential directions 

respectively. 

The physical meaning of J; is the change of the design boundary in i direc

tion due to the unit change of the design variable b. The form of ~i depends on 

the design boundary representation as well as the perturbation of the design 

variable. 

By combining equations (4.50) and (4.51), and using (4.53), the design 

sensitivity of (4.52) is obtained as 

d<fo 
db 

where 

Di af --I -a u(u)c(A)fndT 
c T Ut 

dfn 
fn.s = ds 

dfs 
fs.s = ds (4.55) 
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4.5 The Modelling of the Adjoint Problem 

4.5.1 Numerical Approaches for Problems with singu

lar Loads 

One of the main concerns of the continuum method for design sensitivity anal

ysis is the modelling of the adjoint problem because of the appearance of the 

singular adjoint loads. The contribution of the adjoint problem to design sen

sitivity formula can be written simply as 

( 4.56) 

where C is a constant, a(u) and C:(A) are solutions of the initial problem and 

the adjoint problem respectively, Vn is the normal component of the velocity 

field, and Td is the design boundary. 

There are two cases needed to be considered. The first case is that the ad-

joint loads are applied on the part of boundary which does not change shape, or 

inside the domain, then according to Saint Venant's principle, the unbounded 

strain field due to the adjoint loads is confined to a small local area, with reg

ular strain field away from the adjoint loads ( including the design boundary). 

Since the sensitivity analysis needs only the strain information on the design 

boundary as indicated by equation (4.56), the singular adjoint load will not 

significantly influence the distribution of the strain on the design boundary, 

therefore the adjoint loads can be implemented into BEM formulation directly 

as a body force. 

The second case is when the adjoint loads are on the design boundary, in 

which the strain field is singular and causes problem in the formulation for 

sensitivity analysis. For a displacement sensitivity, the adjoint load is a unit 

load, therefore the strain near the load will behavior as l/r. Even though the 

use of quadratic element can not model the l/r strain distribution exactly, 
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according to author's experience, the £(,\) in (4.56) can be approximated by 

a polynomial function. The reason for such approximation is mainly due to 

the facts that 1) £(,\) is singular at the loading point, but the final integral of 

(4.56) is finite since the singular term has different signs from the two sides, 

2) the singular term 1/r dies down very quickly away from the loading point. 

In the case of a stress constraint on the design boundary, the strain field 

becomes more singular with the order of 1/r2 , the direct use of adjoint loads 

into BEM formulation will not provide satisfactory solutions. As will be shown 

in the examples later on, the direct implementation of two point loads in BEM 

formulation can only be used in a smooth boundary with uniform velocity and 

far away from any corners. So some treatments are required to deal with the 

adjoint problem for stress constraints. Four approaches have been considered 

in the research which are: 

(1) Mesh refinement and special elements method (Ml) 

(2) Local singular function method (M2) 

(3) Smooth load method (M3) 

(4) Singularity subtraction method (M4) 

In the following, each method will be discussed. The numerical procedures 

for M2, M3 and M4 are proposed, with full investigation of M3. The numerical 

implementation of M4 will be developed in section 4.6. 

4.5.2 Mesh Refinement and Special Elements Methods 

One common method to model singularities is to grade the mesh in the neigh

borhood of the singularity. The mesh refinement can minimize the area of local 

singularity, and can be used for weak singularity, or some corners in which the 

interest is the solutions away from the corners. 

Another similar method is to introduce special elements such as the quarter 
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point elements so that the interpolation function presents some kind singular

ity. Both mesh refinement and special element methods can not be used to 

model arbitrary order singularity. As the number of constraints could be very 

large, so the most important feature required to formulate the adjoint prob

lem is to keep the same mesh with the initial problem so that the factorized 

left hand matrix of initial problem can be used as discussed before. The mesh 

refinement and the special elements methods do not possess this feature, there

fore they are not suitable for the modelling of the adjoint problem. 

4.5.3 Local Singular Function Method 

It is always possible to split the unknown displacement field into two parts 

near the singularity, i.e. U = Us + u" where Us is a singular field, and U r is 

the regular field. If the analytical form of Us can be found, then the unknown 

singular field u can be transformed into a unknown regular field U r plus a 

known singular field Us> such that the final system equation does not involve 

singular unknowns. It is called local singular function method if the splitting 

of displacement field is confined only locally. This approach have been used in 

FEM for solving crack problems [7J. 

This idea is used here to develop an algorithm for solving the adjoint prob

lem by BEM, which is outlined as follows. 

Consider an adjoint problem for a stress constraint on a boundary, so the 

adjoint loads will be two point loads on the boundary, with a small distance 

2d between them. Fig. 4.4(a) shows an adjoint problem with domain n, 

and bounded by boundaries 71, and 72, where 71 is the kinematically fixed 

boundary, and adjoint loads are on the traction boundary 72. A* is the center 

of the two unit loads. This adjoint problem can be split into two subproblems 

based on superposition as shown in Fig. 4.4(b) and 4.4( c). We denotes the 

adjoint problem of Fig. 4.4( a) as problem (a), the problems of Fig. 4.4(b) and 

Fig. 4.4( c) as problem (b) and problem (c) respectively. 
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Fig. 4.4(b) denotes the two point loads acting on the semi-infinite plane, 

and the corresponding displacements and tractions on boundary 71 and 72 are 

U and p respectively. The solution of the problem (b) can be easily obtained by 

differentiating the well known Mindlin's solutions of one point load, therefore 

the solutions of displacements and stresses of the problem (b) are known. 

Fig. 4.4( c) presents the complementary problem (b) so that the sum of 

problem (b) and (c) satisfies the initial boundary conditions of the problem 

(a). 

Such division provides us the following relation, 

solution (c) = solution (a) - solution (b) ( 4.57) 

As far as the adjoint loads are not applied on the corners, the solution of 

problem (c) at neighborhood A * should be regular, i.e. no singularity exists 

near A*. Therefore we conclude that problem (a) and problem (b) should 

have the same singularity at the neighborhood of A*. This conclusion provides 

such a construction of u = Us + U r near point A *, in which U is the singular 

unknown displacement field of the adjoint problem, Us is the singular solutions 

of problem (b), and U r is the remain regular solution of problem (c). This 

splitting process transforms the singular unknown displacement into a regular 

unknown displacement. In practice this splitting function could be confined 

in only one element where the adjoint loads are acting on the middle of the 

element. 

Consider the adjoint loading on element k with length c, and the distance 

between the two point loads is 2d. The semi-infinite plate solution Us in local 

coordinate ~ can be wri t ten as 

2 ~-A 
US = - 7r E log I ~ + A I (4.58) 



www.manaraa.com

where 

87 

A= 2d 
c 

(4.59) 

Assuming the displacement at the load element k has the form U r + U., 

with U r having quadratic variation, i.e. 

(4.60) 

In order to keep the continuity with the adjacent elements, the following 

boundary conditions are used to obtain aI, a2 and a3, 

where Ul, U2 and U3 are nodal displacements. 

( 4.61) 

( 4.62) 

(4.63) 

Using boundary conditions (4.61)- (4.63), the equation (4.60) can be 

simplified as: 
3 

U = E 4>iU i + f(~, A) (4.64) 
i=l 

where 
2 1+A ~-A 

f(~,A) = - 1rE[log 11 _ A I ~ + log I ~ + A I] (4.65) 

and 4>i are standard quadratic interpolation functions. 

Note that the equation (4.65) is derived based on a flat boundary. Since 

the distance between the two point loads is very small, it can also be used 

approximately for curved boundaries. 

Recall the boundary integral equation for node i, 

CiUi + t 1 p*udr = t 1 u*pdr 
j=l ~ j=l ~ 

(4.66) 
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In the element k, u = L tPmum + fk(~' A), for any other elements f equals 

to zero, therefore we have 

( 4.67) 

The final system equation in matrix form: 

HU=GP+F ( 4.68) 

where H,G are standard influence matrices, 

U,P are boundary displacements and tractions respectively, 

F denotes singular field term, Fi = - Jrk p~ fk(~' A)dT. 

The purpose to introduce fk(~' A) is to evaluate the displacement field 

analytically for the singular term. The solutions U of the equation (4.68) are 

boundary displacements except in element k, in which U = U + f(~, A). 

The difficulty related with the special shape function method is that the 

F in (4.68) includes high order singular integrands. For a straight boundary 

it is possible to compute this integral analytically. But for the general curved 

boundary, numerical integration is needed, therefore a proper technique for 

this singular integral should be used. This method has not been justified by 

numerical implementation, and further research is needed. 

4.5.4 Smooth Loading Method 

The aim to smooth the adjoint loads is to smooth the displacement field near 

the adjoint loads by introducing equivalent distributed loads. The equivalent 

loads should satisfy the following conditions. 

1) Global equality 

Global equality requires that statically the distributed loads should be equal 

to the adjoint loads both in magnitude, direction and position ( center of 
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loads). This equality ensures that the equivalent loads have the same effects 

as the adjoint loads globally except the area near the loads. This is justified 

by Saint-Venant 'so 

2) Local equality 

Local equality ensures that the local effects of the equivalent loads are the 

same as the point loads for the stress constraint. Because the adjoint loads are 

self-equilibrium on a small area, the strain is very small except near the loads. 

So it is important to evaluate the local distribution of strain accurately. 

It is easier to choose the forms of loads which satisfy the global equality. 

The basic form of such loads are anti-symmetric distributed loads, with the 

center of loads coinciding with the point loads. 

The requirement of local equality needs more attention. Consider a straight 

traction free boundary first. For quadratic element modelling, the displace-

ments have quadratic variation in each element, the tangential stress is linear 

in each element. Consider a stress constraint as 

<p = _[1 1 UsdT 
a Ta 

(4.69) 

here Ta is part of the element k. As the stress is linear, the mean stress <p is 

equal to the middle point stress of the element. I.e. 

<p = (J.m (4.70) 

so the stress sensitivity will be the middle point stress sensitivity of the element. 

The adjoint loads is shown in Fig. 4.5, where la = 2a 

For a different distance a, according to the above observation, the stress 

sensitivity should be the same, i.e. representing the middle point stress sen

sitivity. By the superposition principle, the distributed loads also represents 

the mean stress sensitivity .. So we get the following conclusion: For straight 

boundaries, any anti-symmetric distributed loads ( including point loads) rep-
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resent the adjoint loads of stress sensitivity, under the condition that loading 

area is small, usually within one element. 

If the adjoint loads are on the curved boundary, there will be two sets of 

adjoint loads, one is the distributed load along normal direction, and another 

one is the two point loads along the tangential direction. Again the two point 

loads can be approximated with the same methods of straight boundary by 

distributed equivalent loads along the tangential direction. 

The simplest distributed loads are triangle loads as shown in Fig. 4.6, which 

can be implemented into BEM directly as boundary traction. The distribution 

of the equivalent triangle loads can be calculated as following. Assuming the 

distributed load has the form p = ee, and the length of the element is t. In 

order to equivalent the distributed loads with the two point loads apart away 

with distance t, we have the following relation by static equivalency: 

therefore 

11 I I 
I xl = ee--~d~ 

-1 22 

6 
c= -

I 

(4.71) 

(4.72) 

In order to further smooth the strain field, other smooth distributed loads 

can be chosen such as those shown in Fig. 4.7, in which the calculation of 

J U*pdT can not be separated into J U*if>dT P. Since the distribution of p is 

known, the integral can be calculated directly as J u*pdT. 

Since the adjoint loads for curved boundary can be approximated as two 

point loads as shown in Fig. 4.3(b), the distributed loads shown in Fig. 4.6 

and Fig. 4.7 can also be employed as the adjoint loads for curved boundaries. 
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4.5.5 Singularity Subtraction Method 

One attractive way to model the adjoint problem is to remove the singularity 

from the BEM equation, which is often referred as singularity subtraction 

method. This method has been used in many application, such as fracture 

mechanics [8, 9]. In the following, the basic procedure is given, the detailed 

development for solving the adjoint problem will be presented in the next 

section. 

Recall the adjoint problem in matrix form: 

HU=GP (4.73) 

As the adjoint loads are two point loads, so the displacement field near the 

adjoint loads will be singular. Assuming that the solutions of another elastic 

problem with the same singularity near the adjoint loads are known, noted as 

U. and p •. So we have: 

HUs = GPs (4.74) 

Subtract equation (4.73) byequation (4.74), we have 

HUr = GPr (4.75) 

where Ur = U - Us and P r = P - P s. 

As U and Us, P and p. have the same singularity near the adjoint loads, 

therefore U r and P r will be regular. Since equation (4.75) involves only regular 

boundary conditions, it can be solved by standard BEM, and the final solutions 

of the adjoint problem can be obtained by adding the singular solution U. and 

p. to U r and Pr. 
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4.5.6 Concluding Remarks 

Four approaches are investigated above for the modelling of the adjoint prob

lem. Although the mesh refinement and special elements methods are simple 

in concept, the requirement for rearranging the initial mesh needs much high 

computation cost which makes it difficult to use in practice. All the other 

three methods have the same left hand side matrix with the initial problem, 

so the forward and back substitutions can be carried when solving the adjoint 

problem. 

As the accuracy is concerned, the singularity subtraction method removes 

the singularity completely from the BEM equation, therefore better results can 

be expected. The smooth load method only smooth the singular field, whereas 

the local singular function method has the difficulty to calculate the singular 

integral F accurately. 

The simplest method in term of implementation is the smooth load method 

in which the external load of the adjoint problem is a localized distributed 

load (often on one element only). The singularity subtraction method needs 

to compute the new regular boundary conditions (Dr' P r), and the local 

singular function method requires the calculation of the term F. 

By considering both efficiency and the accuracy of the methods for the 

adjoint problem, the possible best methods are the smooth load method and 

the singularity subtraction method, in which the former has been fully studied 

above and the latter will be investigated next. 



www.manaraa.com

93 

4.6 Implementation of the Singularity Sub-

traction Method 

The singularity subtraction method (SSM) can remove the singularity com

pletely from the BEM equation, so it is ideal for modelling the adjoint prob

lem. In this approach the final solutions are obtained by the combination of 

two solutions - the regular solution and the singular solution, in which the 

singular solution is known analytically. This approach has been successfully 

applied to fracture mechanics by Aliabadi et al [S, 9], in which the exact form 

of the singular field is known for 2-D crack (Williams field)., 

The problem arises in finding a singular field with the same singularity 

as the adjoint problem in the vicinity of the adjoint loads. As discussed in 

the special shape function method, the solutions of two unit loads on the 

semi-infinite plane has the same singularity as the same loads acting on any 

smooth traction free boundary, thus they can be used as the singular field 

for subtraction. But as can be seen from Fig. 4.4, the relation of ¢>( a) = 

¢>Cb) + ¢>(e), where ¢> presents the solutions of the problem, was derived under 

the assumption that the domain is bounded by a closed convex boundary. This 

implies that no part of the domain will cross the horizontal line into the top 

half-plane. Fig. 4.S shows an adjoint problem, in which part of the domain is 

on the other side, therefore the statement of ¢>(a) = ¢>(b) + ¢>(e) is not valid. 

In order to apply SSM to arbitrary boundaries, it is necessary to built a 

singular field for the case of Fig. 4.S. 

First, let's construct a field with two point loads acting on a semi-infinite 

plane. Since the analytical solutions of one point load on the semi-infinite plane 

are well known as the Mindlin's solutions, by differentiating the solutions along 

y direction, the fundamental solutions with two point loads can be found, which 

are given in appendix A. 
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Next, by using the mirror image, the above solutions can also be applied to 

the whole upper semi-infinite plane except the place where the two unit loads 

are applied (such as the case of Fig. 4.8). This can be explained as following. 

Consider a domain n under a pair unit loads as shown in Fig. 4.9, n = 
nco + nl> where nco denotes the semi-infinite plane, and nl is a finite domain 

attached to nco. The mirror image of nl in the semi-infinite plane is denoted 

as n2 • 

If the nl is removed from the n as shown in Fig. 4.10, then the remaining 

part nco is a semi-infinite plane, so the solutions over this semi-infinite plane 

under the pair loads are known. These solutions are named ~ solutions A. 

From the solutions A we can compute the displacements and tractions along 

the boundary of n2 , i.e. 

on TO (4.76) 

where the tractions t; = O";jnj. 

If the n2 is taken from the half-plane noo , and the U2, Uzo or t2 , tzo are 

applied on the boundaries T2+TO, the solutions for this boundary value problem 

will be exactly the same as the solutions A at domain n2 . Fig 4.11 shows a 

case where part of the boundary is subject to displacements, part to tractions. 

We call the solutions of Fig. 4.11 as solutions B. Obviously we have, 

where fB and fA denote the solutions B and solutions A respectively. 

The elastic solutions in nl of Fig. 4.9 can be constructed as the mirror 

image of the solutions B, i.e. rotating the solutions B onto the domain nl. 
The fundamental solutions for the domain nl then can be written as: 
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u i = -uy y 

i 
u xx = U xx 

i 
U yy = u yy 

i 
u xy -uxy (4.77) 

where i denotes the node in top half plane, u i and u i are the displacement and 

stress fields in 0 1 , U and u are the corresponding mirror image of node i in the 

lower half plane O2 , which can be obtained from the formulations of Appendix 

A. The boundary tractions in 0 1 can be computed as tk = uljnj. 

The arguments for such a construction of the solutions in 0 1 are based on 

the following considerations. 

a) The tractions based on (4.77) along To is zero, also u~ = U x = 0, which 

mean that both tractions and the displacements are continuous across the 

common boundary TO, so no discontinuity is involved in the domain O. 

b) The O2 under the boundary tractions t2 , t 20 and displacements U2 , t 20 

forms an equilibrium state, therefore the domain 0 will still be in equilibrium. 

The numerical implementation of the SSM is: 

1. Form the governing equation of BEM for the adjoint problem: 

HU=GP (4.78) 

where H,G are influence matrices, U and P are boundary displacements 

and tractions. Note the tractions are zero everywhere except two unit 

loads. 

2. Define new boundary conditions as: 

pr=p-p. (4.79) 
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where Us and P s are the displacements and tractions given in the ap

pendix A. If part of the boundary is on the top half plane, the equation 

(4.77) is used to compute the Us and P a • 

As discussed above, P and P s, U and U a have the same singularity near 

the pair loads, the new variables U r and P r will be regular. Substituting 

equation (4.79) into (4.78), and noting that the Us and P a are the 

solutions of an equilibrium state, i.e. HU s = GP s, therefore: 

(4.80) 

3. After solving the equation (4.80) for U r and P n the final solutions can 

be obtained by adding Us and P s to U rand P r. 

Unlike the point loads and element loads methods, the SSM totally removes 

the singularity from the BEM equation, therefore the final solutions can be 

expected to be more accurate, and the above procedure can be easily imple: 

mented. As we known the fundamental solutions of two point loads acting on 

the semi-infinite space, so this technique can be extended to three-dimensional 

problems. 

4.7 A New Finite Difference Based Approach 

to Shape Design Sensitivity Analysis 

Of the many approaches to design sensitivity analysis, the total finite dif

ference method (simply noted as FDM), in which the design sensitivities are 

calculated by disturbing each design variable in turn, and using the finite differ

ence formula to approximate the derivative of the constraints and the objective 

function, is simple in concept, and has been widely used in the past [10, 11]. 

However there are two serious drawbacks by using FDM; 1) the accuracy of 
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the design sensitivity often depends on the choice of the perturbation step, 2) 

the computational cost is usually higher [12]. 

A new finite difference based method is presented in this thesis, which over

comes the two drawbacks of FDM. By analyzing the perturbation procedure of 

FDM, the difference between the initial geometry and the perturbed geometry 

can be replaced by a perturbation load, which is a function of the stress field of 

the initial problem and the design boundary geometry. This new method, em

ploying the finite difference concept and the perturbation load, will be referred 

as finite difference load method (FDLM). 

4.7.1 A Simple Example 

In order to explain the basic idea behind FDLM, a simple cantilever beam 

example is considered first. Fig. 4.12(a). shows a thin cantilever beam, in 

which the load is applied at the right end. As I ~ b, the beam theory can be 

used. The length of the beam I is chosen as the design variable, and the load 

is assumed to be constant during the design change. 

Consider a constraint of bending moment at cross section C, with x = x, 
thus the initial bending moment can be eApressed as: 

g(l)=M=p(l-x) (4.81 ) 

Differentiating g(1) with respect the to design variable I, we obtain the 

design sensitivity analytically, i.e. 

(4.82) 

In what follows, we will use another approach to calculate the design sen

sitivity, i.e. using FDLM. 
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As the forces at any cross section of the initial beam contain two compo

nents, one is the vertical force p, another one is the bending moment M, where 

M = p(l- x). If we cut the beam into two parts at cross section A, and ap

ply the stresses at section A as boundary tractions, as shown in Fig. 4.12(b), 

where Ma = pSI and Pa = p, then Fig. 4.12(a) and Fig. 4.12(b) produce 

the same structural responses (stress, bending moment etc.) for the remaining 

part of the beam, 0 :::; x :::; I - SI. This means that the bending moment at C 

of the initial beam (Fig. 4.12(a)) has the same value of the bending moment 

of Fig. 4.12(b). According to the superposition principle, the loads of Fig. 

4.12(b) can be separated as shown in Fig. 4.12(c) and Fig. 4.12(d), therefore 

the bending moment at cross section C can be expressed as 

( 4.83) 

where Ml is under the load Pa as shown in Fig. 4.12(c), and M2 under the 

load Ma as shown in Fig. 4.12(d). 

By definition, the design sensitivity is the change rate of g with respect 

to the design change. As the initial g equals to M, and the modified g after 

design perturbation 15( -I) is MI, thus we have 

dg(/) = lim Ml - M 
dl 61-+0 15(-1) 

(4.84) 

where -1 indicates the negative change of the design variable 1, which modifies 

the beam length from I to 1 - 151. 

Substituting (4.83) into (4.84), we obtain 

dg( I) = lim M2 
dl 61-+0 151 

(4.85) 

M2 is the solution of the perturbed beam under load Ma (Fig. 4.12(d)), so 

M2 = Ma. For a linear elastic structure, the structural response is proportional 

to the a,pplied loads, so the solution M2/ I5l can be obtained by modifying the 

load M~ to Ma/n The modified load Ma/15l is called the perturbation load 
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p* in order to distinguish it with the 'adjoint load' in the continuum method, 

and the 'pseudo-load' in the semi-analytical finite difference method. Since 

Ma = pol, the perturbation load p* = p. 

The solution for the perturbed beam under perturbation load p* will give 

a bending moment p at cross section C, which is the same as the analytical 

solution by (4.82). This implies that the sensitivity of the bending moment 

at cross section C can be obtained by putting a perturbation load on the 

perturbed beam. As 01 approaches zero, the perturbed beam approaches the 

initial beam, therefore we can apply the bending moment p* = p onto the 

initial beam. Fig. 4.12(e) shows the perturbation load on the initial geometry, 

which presents the design sensitivity respect to design variable 1. 

It can be clearly seen from this example that FDLM needs only the solutions 

of the initial structure under the perturbation loads p*. As the sensitivity is 

obtained by applying the perturbation loads onto the initial structure as an 

extra load case, so there is neither perturbation step nor new perturbation 

geometry involved in the sensitivity calculation. 

4.7.2 Derivation of the Finite Difference Load Method 

(FDLM) 

Before the derivation of the finite difference load method (FDLM) for 2-D 

continuum structures, let us have a close look of the design boundary per

turbation. Consider a smooth design boundary 7 as shown in Fig. 4.13 In 

simplicity assuming only one design variable, the vector r, controls the design 

boundary shape, with point a and b fixed. 

Given an infinitely small design perturbation or, which will form a new 

boundary 71. As far as the boundary geometry is concerned, the tangential 

component of or has no effect for the modification of the boundary geometry. 



www.manaraa.com

100 

This indicates that only the normal component of the design perturbation 8r 

is needed to specify the new design boundary. 

The normal movement of the design boundary can be expressed as 

Vn = f(08r'n (4.86) 

where Vn denotes the normal movement of the design boundary due to the 

perturbation of design variable r, n is the outward normal vector, e presents 

the local coordinates. f is a shape function to interpolate the shape of the 

perturbation, with the values f(a) = f(b) = 0, f(r) = 1. f can be any 

continuous functions, such as linear for the linear boundary representation, 

cubic for the cubic spline representation. 

Now consider a general two dimensional structure as shown in FigA.14(a). 

The domain n are bounded by boundaries Tl and T2, where Tl is the kinemat

ically fixed boundary, and T2 is the traction boundary. Part of boundary T2 

is the design boundary, noted as Td, and the remaining part of the traction 

boundary is Tt. The tractions on Tt are P, and tractions on Td have the compo

nents of Ts and Tn in tangential and normal directions. This initial boundary 

value problem is denoted as problem 1. 

As the design boundary is controlled by the design variables, when disturb

ing one design variable b with 8b, where 8b = 18bl, the design boundary will 

move from Td to T~. The normal movement of the design boundary is 

(4.87) 

where nb is the normal component of the unit vector 8b/18bl. Vn is the design 

boundary perturbation along normal direction, and f is the shape function for 

the design boundary represent<;ttion. 

Since Vn is very small, the stresses along contour T~ of the initial structure 

can be approximated as 
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a+ oan 
Tn+a Vn n n-

a;" = T oasn V. (4.88) s + 0 n n-

where as presents the tangential stress on the initial design boundary, at is 

the stress along T~. Tn and Ts are boundary tractions in normal and tangential 

directions respectively. Vn is the distance between Td and T~. n- presents the 

inward normal direction, as the stress does not exist outside the domain. 

Cut the domain n along the boundary Td, and name the remaining domain 

as na bounded by T1 + Tt + T~, which will be called the perturbed structure. 

If we apply boundary traction atnj onto the boundary T~ of the perturbed 

structure, we have another boundary value problem, denoted as problem 2. 

Fig. 4.14(b) shows the problem 2, where Ps and Pn are the components of 

tractions atnj along tangential and normal directions. It is obvious that the 

solutions of problem 1 are the same as the solutions of problem 2 for x E na. 

The components Pn and Ps on the T~ can be obtained as follows 

(4.89 ) 

and 

( 4.90) 

where O~ and O~ are the normal directions of boundary T and T' respectively. 

Substituting (4.88) into (4.89), we obtain 

Pn = as sin2 On + Tn cos2 On + 2T. sin On cos On 

( oas . 2 Oan 2 Oasn . ) 
+ -0 sm On + 0- COS On + 2-0 sm On cos On Vn n- n- n-

Ps (as - Tn) sinOn cos On - Ts(sin2 On - cos2 0n) 

[( oas oan ). oasn ( . 2 2)] ( ) + on- - on- sm On COS On - on- sm On - COS On Vn 4.91 



www.manaraa.com

102 

The applied load Tn and T. on the design boundary Id will change during 

the design boundary perturbation, i.e. Tn ~ T:, T. ~ T.a. Consider a struc

tural response 9(X), x E na , the sensitivity due to the perturbation of design 

variable Db, by definition, can be written as: 

d9 = lim 93 - 91 
db 6b_O Db 

(4.92) 

where 91 is the response of the initial structure under loads P, Tn and T •. 93 

is the response of the perturbed structure under load P, T: and T.a, which is 

named as problem 3. 

Because the solutions of problem 1 are the same as the solutions of the 

problem 2, so 91 can be replaced by 92, i.e. 92(X) = 91(X), x E na. Byex

amining equation (4.92), it is noted that the design sensitivity d9/db is the 

difference of solutions of problem 2 and problem 3, and divided by Db. The 

problem 2 and problem 3 have the same domain na , the same kinematical 

boundary, but with different loads, by using superposition principle and the 

property of elasticity (i.e. the structural response is proportional to the ap

plied loads), we end up that the design sensitivity d9/db is the solution of the 

perturbed structure under certain loads, which are called perturbation loads. 

The perturbation loads equal the differences of the tractions of problem 2 

(i.e. P, Pn and P.) and problem 3 ( i.e. P, T: and T:), and divided by Db. As 

P is canceled out, so we have 

( 4.93) 

where p~ and P: are the normal and tangential components of the perturbation 

loads. 
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Noting the following approximation, 

{
On -t 0 

Sb-tO=* cosOn-t1 

sinOn -t 0 

(4.94) 

Substitute (4.91) into (4.93). After lengthy algebra derivation, finally we 

have 

(4.95) 

where 8Tn /8b and 8Ts /8b is the change rate of the external load on the de

sign boundary with respect to the design variable b, and Ci = sin On/ Sb which 

depends on the design boundary modelling. 

It can be seen from the above procedure that once the perturbation loads 

are known, the design sensitivities can be obtained by solving the boundary 

value problem of the perturbed structure under perturbation load p. as shown 

in Fig. 4.14( c). Since the limiting process Sb -t 0 leads the perturbed structure 

approaching to the initial structure (i.e. !1a -t !1), so the perturbation loads 

can be applied on the initial structure to calculate the design sensitivity. We 

name the problem of the initial structure under the perturbation loads as the 

perturbation problem, therefore the design sensitivities are the solutions of the 

perturbation problem. 

4.7.3 Further Discussions of FDLM 

The perturbation loads given by (4.95) are obtained assuming that Vn is 

positive moving towards the domain !1 (i.e. n- direction). In order to keep 

the conventional notation that Vn is positive in n+ direction, we can simply 

change the sign of p~ and p: in (4.95). The geometry change from towards 
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the domain to outward the domain will also change the sign of Ci, 8Tnj8b and 

8T.j8b, so (4.95) becomes, 

(4.96) 

where n- denotes the normal towards domain. f(() is the shape function of 

the design perturbation, which is positive outward domain. Fig. 4.15 shows a 

case of design boundary perturbation, in which f{a) = f{b) = 0, f(c) = 1. 

In order to clarify the meanings of Ci, nb, 8T.j8b, 8Tn j8b, an example 

of a concrete wall subject to water pressure shown in Fig. 4.16 is used for 

demonstration. The design boundary is ad, z is the angle of the slope ad, and 

the design variable is b. Given a design perturbation 8b, we have 

nb sin(z) 

c;(x) 1 . 2( ) --sm z 
h 

f(x) ~sin(z) 

8T.{x) 
0 

8b 
8Tn(x) ~ sin2(z) cos{z) 

8b 
( 4.97) 

It can be seen form (4.97) that nb depends on the direction of 8b only, 

f(x) is the function of position x, and c;, 8T.j8b, 8Tnj8b are functions of x, 

nb and f(x). 

From (4.96), it is clear that we need to evaluate the derivatives of stresses 

Un and Usn along normal directions in order to obtain the perturbation loads. 

By considering the equilibrium equation of a small block along the boundary, 

these two terms can be obtained by boundary information only, which has been 

used in the continuum approach without proof. Since the polar coordinates are 

very convenient coordinates for general 2-D boundary modelling and include 
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the case of X - Y coordinates, the polar coordinates will be used for the 

derivations of the derivatives. The detail derivation can be found in appendix 

B, and the results are given as following: 

k( 8ar o ar - 0'0 X) 
= raB + r + r 

8ae 2 
k(r8() + ;:aro + Xs) ( 4.98) 

where arO, ar and 0'0 are the tangential boundary traction, normal boundary 

traction and tangential stress respectively. k = 1 if r+ is in the n+ direction, 

otherwise k = -1. Xr and Xs are the components of the body force in radial 

and tangential direction respectively. 

The solutions of the displacements and stresses of the perturbation prob

lem present the displacement and stress sensitivities at a fixed point, i.e. 

8u/8b, 8a/8b. If the constraint is an integral at a fixed area, 

9 = 1 h(a, U)dT (4.99) 

then the sensitivity can be written as 

8g = 1[8h 80' + 8h 8u]dT 
8b T 80' 8b 8u 8b 

(4.100) 

where h is a general function of the displacement and the stress. 8u I 8b, 80'/ 8b 

are the solutions from FDLM, 8g/8b denotes the design sensitivity at a fixed 

area. 

The structural response g( x) discussed above is in a fixed area. If the 

constraint is defined on the design boundary, the constraint area will move 

as the design boundary moves. For such case the design sensitivity obtained 

above can be modified by using the material derivative method. 

According to the material derivative concept, the total change of a function 

9 can be separated into two parts as stated in equation (4.50), 

(4.101) 
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where Dg/ Dt presents the total change of the function g, 5gt is the change of 

9 at a fixed area (the </>a in equation (4.50)), i.e. 5gt = g(x, t + 6t) - g(x, t), 

5gx presents the contribution due to the movement of the constraint area (</>b 

of (4.50)), i.e. 5gx = g(x + 5x, t) - g(x, t). 

Since the sensitivity is the change rate of 9 with respect to the design 

variable b, by dividing (4.101) by 5b, and let 5b --+ 0, we obtain the design 

sensitivity 

(4.102) 

where dg / db is the final design sensitivity, 8gt! 8b is the design sensitivity at 

a fixed area which can be obtained from the solutions of FDLM. The second 

term is due to the movement of the constraint. 

(4.102) is the general formulation for shape design sensitivity. The cal

culation for 8gx /8b depends upon the type of constraints. If a constraint is 

defined at one point of the design boundary, then [13] 

(4.103) 

g,s and g,n present the gradients of 9 in tangential and normal directions re

spectively, V. and Vn is the movement of the constraint along tangential and 

normal directions respectively. 

Note V. = f(05bs b and Vn = f(05bnb, so 

0;; = g,sf(OSb + g,nf(Onb (4.104) 

where Sb and nb are the components of unit vector 5b/lbl in tangential and 

normal directions respectively. 

For other case of g, the expressions of 8gx /8b can be derived in a similar 

way. 

The numerical implementation of the FDLM for design sensitivity calcula

tion can be summarized as following: 
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1. Solve the initial problem under the applied loads. 

2. Calculate the perturbation loads given by formula (4.96). 

3. Apply the perturbation loads to the initial structure, and the design sen

sitivities can be obtained from the solutions of FDLM. The perturbation 

problem can be solved using the already factorized system equation of 

the initial problem. 

4. If the constraint is on the design boundary, add 8gx /8b to the above 

solutions. 

4.7.4 Concluding Remarks 

The FDLM formulation is based on the continuum model, no discretization 

approximations are involved during the derivation of the perturbation loads. 

As the perturbation loads of FDLM are acting on the initial geometry, thus 

the solution under this load can be solved efficiently by using already factor

ized matrices for the initial problem analysis. Subsequently it is very easy to 

implement using the existing analysis programs 

Although the formula for perturbation loads has been derived for 2-D elastic 

problems, It can be easily extended to 3-D problems using the same concepts. 

FDLM can be coupled with either FEM or BEM for design sensitivity analysis. 

4.8 Numerical Examples 

As presented in previous sections that four different approaches have been 

developed to obtain stress sensitivity, which are: 
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1. the continuum method by applying point loads as the adjoint loads 

(PLM). 

2. The continuum method by applying distributed element loads as the 

adjoint loads (ELM). 

3. The continuum method by using singularity subtraction method for the 

adjoint problem (SSM). 

4. The new finite difference load methods (FDLM). 

In the following, four test examples are used to study the accuracy of these 

four methods. The influences of the mesh refinement are also investigated. 

The examples are: 

1. A cantilever beam. 

2. A circular plate under internal pressure. 

3. A fillet. 

4. An elastic ring under a concentrated load. 

The stress constraint of these examples is the average stress over part of 

the boundary, i.e. 

¢ = ~ 1 meadT (4.105) 

where Ie is the element length of the stress constraint. 

In all the examples, continuous elements are used in BEM analysis, and 

the computations are carried out on a VAX 11/750 of C.M.!. 



www.manaraa.com

109 

4.8.1 A Cantilever Beam 

The first example is a cantilever beam as shown in Fig. 4.17. The dimensions of 

the beam are: b=2 and L=10. The material properties are: Young's modulus 

E = 1.0 X 107, and Poisson's ratio v = 0.3. The loads are applied at the 

right end parabolically with p=4/3. The depth of the beam is chosen as the 

design variable. As this is a thin beam, so the beam theory can be used as the 

analytical solutions. 

Let us first examine the stress sensitivities along the lower surface of the 

beam under a given mesh as shown in Fig. 4.18. The sensitivity results at fixed 

elements along the lower surface are listed in Table 4.1, and are plotted in Fig. 

4.19., in which FDM is the finite difference results by disturbing the design 

variable by 0.01%. PLM, ELM, SSM and FDLM are sensitivities obtained 

numerically. The relative error is defined as: 

8 = l(Jnu - (JFDM I 
(JFDM 

(4.106) 

where (Jnu and (JFDM are the numerical solutions and finite difference solutions 

respectively. 

It can be seen from the results that all the four methods agree with the 

finite difference method well except at element 10, which is near the tip of 

the beam. ELM, SSM and FDLM give better results than PLM in general. 

The poor accuracy at element 10 may be due to the following reasons: a) 

the stress level at element 10 is very small; b) the stress sensitivity level of 

element 10 is also small; c) the influence of the corner which often causes poor 

BEM results. It is noted that the FDM results are nearly the same with the 

analytical solutions of beam theory (within 0.5%). 

The mesh refinement method is used next to investigate the relationship 

between the stress. sensitivity and the boundary mesh. The mesh arrangement 

is shown in Fig. 4.20, where N} denotes the element's number on the upper 
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surface and the bottom surface, and N2 for the elements on the two ends. The 

design boundary is the top surface of the beam, and the design variable is 

the depth of the beam. The stress constraint is at the middle point A of the 

lower surface of the beam. A finite difference method with very fine mesh and 

1 X 10-4 perturbation gives a stress sensitivity value of 10 at A, which will be 

served as the exact solution. 

The numerical results are given in Table 4.2 and plotted in Fig. 4.21. The 

first column of the Table 4.2 is the boundary element mesh, column 2 and 3 are 

stresses by BEM and related error compared with beam theory solutions. The 

next 8 column are stress sensitivities and their relative errors compared with 

FDM solution at A (i.e. 10). From these results it can be observed that the 

accuracy of the stress obtained by BEM is higher than the stress sensitivity. 

This is probably because stress sensitivity is a function of stresses of the initial 

problem, therefore the stress sensitivity can not be expected to have better 

accuracy as stress itself. 

As the number of elements are increased, the numerical sensitivities ap

proach the exact solution. All the four methods provide good accuracy with a 

reasonable fine mesh. Again the accuracy of PLM is relatively poor than the 

others. 

4.8.2 A Circular Plate Under Internal Pressure 

The reason for choosing this problem is that we know the analytical solutions 

for both stresses and the stress sensitivities, which makes it possible to evaluate 

the exact errors of the numerical sensitivities. 

Due to symmetry, only quarter of the ring is modelled as shown in Fig. 

4.22. The design boundary is the outer ring surface, and the design variable 

is the outer ring radius b. As the analytical solutions for this problem are 



www.manaraa.com

111 

available [14], we will use the analytical solutions to derive the perturbation 

loads for FDLM, and by solving the perturbation problem analytically, we can 

prove that the FDLM will give the exact solution. 

The tangential and normal stresses of the out ring surface are: 

r=b 

(4.107) 

By using the formula (4.96), the perturbation loads on the outer ring 

surface can be obtained: 

(4.108) 

The solutions for an elastic ring under external uniform load p* can be 

obtained analytically, which are (for stresses) : 

2ba2 a2 

as = -W-a2 )2(1+ r 2 ) 

2ba2 a2 

(b2 _ a2? (1 - r 2 ) 
(4.109) 

These solutions are the same the with the derivatives of the initial stress 

(4.107) with respect to the design variable b. Thus we proved that the solutions 

of FDLM are exact for this example. 

Next, we will exam the accuracy of the stress sensitivity of PLM, ELM, 

SSM, and FDLM respectively with the mesh refinements. Note the pertur

bation loads for FDLM will be obtained numerically by using (4.96). The 

material properties are: E = 1.0 X 107 , and v = 0.3. Nl and N2 are the ele

ments number, and the density of the pressure is 1. The radii are: a=4, b=6. 

The constraint is the point A on the inner ring: surface. 



www.manaraa.com

112 

In the same way as last example, the stress sensitivities obtained with 

different approaches and meshes are listed in Table 3 and plotted in Fig. 4.23. 

It can be observed that ELM, SSM and FDLM converge very fast, PLM also 

provides a good result with a fine mesh. Again as in the beam example, the 

error of the stress sensitivity is always greater than the error of the stress. 

4.8.3 A Fillet Example 

The dimensions and the boundary element modelling are shown in Fig. 4.24. 

Young's modulus and Poisson's ratio are 30.0 X 106 and 0.293 respectively. The 

external loads is 100, and 45 continuous quadratic elements are used for the 

analysis. 

The design boundary T is denoted by ab (from element 24 to element 33). 

The design boundary movement is given by Vn = b x c, where the vector 

c = [0,1,1,1,1,1,1,1,1,0] as shown in Figure 4.25. 

The stress sensitivity results for the design boundary elements are shown 

in Table 4.4, and plotted in Fig. 4.26. The finite difference (FDM) results are 

obtained by disturbing the design variable by 1 x 10-4 • 

The agreements between FDM and PLM,ELM, SSM and FDLM are very 

good except for element 24, which is near the corner. The reason for the poor 

results on element 24 may be due to the fact that stresses are singular near the 

corner, so the evaluation for stress sensitivity by either FDM or other methods 

may not be reliable. The results indicate ELM, SSM, and FDLM give better 

results than PLM in general. 
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4.8.4 An Elastic Ring under a Concentrated Load 

This example is used to demonstrate the accuracy of the various approaches 

for more complex example. The problem is shown in Fig. 4.27. Due to 

symmetry, only quarter of the ring is modelled as shown in Fig. 4.28. The 

design boundary is the outer ring surface, and the constraints are the inner 

ring surface stresses. 32 quadratic elements are used, Nl = 10, N2 = 6. The 

material properties are: E = 1.0 X 107 , II = 0.3, and the geometry data are: 

a=1.5, b=2.25. 

A uniform velocity field is assumed first, i.e. Vn = 1, The stress sensitivities 

at each element of the inner ring are listed in Table 4.5, and plotted in Fig. 

4.29. The finite different results (FDM) are obtained by disturbing the outer 

ring surface with (j = 1 X 10-4 • As can be seen from the results that all the 

numerical methods provide excellent agreements with finite difference results, 

whereas the PLM gives relatively poor results especially near the corners. 

Another velocity field is used next to check the influence of the velocity 

field, with Vn = b * sin{2x), where b is the design variable, and x is the angle 

as shown in Fig. 4.28. The sensitivity results are listed in Table 4.6. Generally 

the results are not as accurate as in uniform velocity case, but the agreements 

are still good. The worst results by PLM appear near the corners, which may 

be due to the fact that the BEM solutions by using point load is approximately 

correct only in the sense of integral, not the distribution. When this integral 

is multiplied by a nonlinear velocity field, the results become worse. 

It should be mentioned here that the Ci term in equation (4.96) is zero for 

the uniform velocity case, but it is non-zero for the sin{2x) velocity in which 

c; = -2jr x cos{2x). 
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4.9 Concluding Remarks 

Based on the theoretical consideration discussed in this chapter, and the jus

tification of the numerical examples presented in last section, we conclude the 

following observations on the accuracy and the limitations of the four numer

ical methods for design sensitivity analysis. 

1. The four methods are developed base on 2-D elastic problem, but all of 

them can be extended to 3-D problem with the same procedure. 

2. The accuracy of the stress sensitivity is better in the case of smooth de

sign boundary than the non-smooth boundary, and poor accuracy occurs 

when the constraint is near a corner. 

3. In gener"al, ELM, SSM and FDLM give better results than PLM. 

4. The sensitivity results can be deteriorate when the constraint is on an 

area with small stress and stress sensitivity. 

5. The accuracy of stress sensitivity usually are not as good as stress itself. 

6. The stress and the displacement constraints using FDLM can be on ei

ther a traction boundary or a kinematical boundary, whereas the contin

uum approaches (PLM, ELM and SSM) are developed for the traction 

boundary only. The extension of the continuum approaches to kinemati

cal boundary is straightforward in concept, but further research is needed 

to investigate the numerical accuracy. 
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Element's No. 1 2 3 4 5 

a -19.44 -17.29 -15.33 -13.18 -11.14 

FDM 29.71 26.62 23.31 20.14 16.98 

PLM 28.03 24.35 21.56 18.67 15.77 

5% 5.6 8.5 7.5 7.3 7.1 

ELM 29.59 25.29 22.46 19.46 16.45 

5% 4.4 5.0 3.6 3.4 3.1 

SSM 29.00 26.07 22.85 19.74 16.65 

5% 2.4 2.1 2.0 2.0 1.9 

FDLM 29.18 25.96 22.87 19.80 16.74 

5% 1.8 2.5 1.9 1.7 1.4 

Element's No. 6 7 8 9 10 

a -9.10 -7.07 -5.44 -3.02 -1.01 

FDM 13.85 10.74 7.65 4.57 1.53 

PLM 12.85 9.89 6.84 3.46 -1.31 

5% 7.2 7.9 10.6 24.2 * 
ELM 13.44 10.42 7.38 4.24 6.96 

5% 3.0 3.0 3.5 7.2 354.9 

SSM 13.a8 10.51 7.45 4.53 4.55 

5% 1.9 2.1 2.6 0.9 197.7 

FDLM 13.68 10.64 7.59 4.56 1.86 

5% 1.2 0.9 0.8 0.2 21.5 

Table 4.1 Low Surface Stress Sensitivities of the Beam 

* indicates the numerical results having the opposite sign compared with the 

FDM method. 
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Mesh Stress 8 PLM 8 ELM 8 SSM 8 FDLM 8 

% 
I 

% 
I 

% 
I 

% 
I 

% nl x n2 0" O"p O"e O"s O"j 

3x1 -9.864 1.4 9.147 8.5 9.456 5.4 13.839 38.4 9.471 5.3 

5x1 -10.085 0.9 8.728 12.7 9.695 3.1 10.420 4.2 10.231 2.3 

7x2 -10.134 1.3 9.048 9.5 9.834 1.7 9.745 2.6 10.308 3.1 

9x2 -10.076 0.8 9.215 7.9 9.837 1.6 10.065 0.7 10.189 1.9 

11 x 3 -10.072 0.7 9.377 6.2 9.887 1.1 10.069 0.7 10.183 1.8 

Exact -10.000 10.000 

Table 4.2 Stress Sensitivity of the Cantilever Beam 

Mesh Stress 8 PLM 8 ELM 8 SSM 8 FDLM 8 

% 
I 

% I 

% 
I 

% % nl x n2 0" O"p O"e O"s O"j 

1 x 1 2.587 0.5 -0.686 28.5 -0.768 20.0 -0.761 20.7 -0.510 46.9 

3 x 1 2.601 0.1 -0.910 5.2 -0.98 2.1 -0.931 3.0 -0.930 3.0 

5x2 2.600 0.0 -0.927 3.4 -0.950 1.0 -0.957 0.3 -0.960 0.0 

7x3 2.600 0.0 -0.936 2.5 -0.953 0.7 -0.960 0.0 -0.960 0.0 

11 x 3 2.600 0.0 -0.941 2.0 -0.955 0.5 -0.960 0.0 -0.960 0.0 

Exact 2.600 -0.960 

Table 4.3 Stress Sensitivity of the Circular Plate 
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Element 24 25 26 27 28 

0' 150.0 88.8 70.9 59.7 50.7 

FDM -103.80 -134.40 -44.78 -27.77 -20.64 

PLM O'~ -83.25 -115.36 -46.56 -28.71 -21.15 

8% 19.0 13.9 4.0 3.4 2.5 

ELM 0': % -96.42 -128.96 -44.97 -27.95 -20.77 

8% 6.4 3.8 0.4 0.6 0.6 

SSM O'~ -214.13 -116.52 -46.89 -28.73 -21.15 

8% 108.0 13.0 4.7 3.4 2.5 

FDLAf O'~ -1l3.01 -120.10 -43.52 -27.68 -20.59 

8% 9.7 10.6 2.8 0.3 0.2 

29 30 31 32 33 

0' 42.9 35.7 28.3 20.2 9.4 

FDM -17.24 -15.79 -16.00 -22.58 6.29 

PLM O'~ -17.44 -15.73 -15.55 -18.94 1.67 

8% 1.2 0.4 2.8 16.1 73.44 

ELM 0': -17.30 -15.79 -15.88 -22.11 2.77 

8 0.3 0.0 0.8 2.1 55.96 

SSM O'~ -17.44 -15.73 -15.63 -19.25 -6.17 

8% 1.2 0.4 2.3 14.7 * 
FDLM O'~ -17.22 -15.80 -15.88 -23.02 4.57 

8% 0.1 0.1 0.8 1.9 27.3 

Table 4.4 Stress Sensitivity of the Fillet Example 
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Element's No. 1 2 3 4 5 

a 135.5 92.2 51.6 16.3 -15.2 

FDM -285.34 -211.11 -126.87 -51.97 15.63 

PLM -313.79 -214.04 -129.99 -54.82 13.04 

6% 10.0 1.4 2.4 5.5 16.5 

ELM -281.70 -212.09 -128.25 -52.68 15.56 

6% 1.3 0.5 1.1 1.4 0.5 

SSM -289.96 -211.12 -126.09 -51.04 16.64 

6% 1.6 0.5 0.6 1.8 6.4 

FDLM -287.29 -212.81 -127.91 -52.48 15.59 

6% 0.7 0.8 0.8 1.0 0.3 

Element's No. 6 7 8 9 10 

a -42.68 -65.51 -83.16 -95.17 -101.26 

FDM 75.07 124.59 163.04 189.28 202.78 

PLM 73.02 123.74 164.60 197.13 253.04 

6% 2.7 0.7 1.0 4.1 24.8 

ELM 75.64 125.90 165.18 192.76 198.61 

6% 0.8 1.0 1.3 1.8 2.1 

SSM 76.11 125.67 164.10 190.70 206.13 

6% 1.4 0.9 0.7 0.8 1.7 

FDLM 75.51 125.53 164.29 190.89 204.80 

6% 0.6 0.8 0.8 0.8 1.0 

Table 4.5 Stress Sensitivities of the Elastic Ring 
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Element's No. 1 2 3 4 5 

0- 135.5 92.2 51.6 16.3 -15.2 

FDM -60.42 -87.74 -93.73 -62.73 -9.30 

PLM -81.20 -89.14 -90.79 -60.47 -10.00 

8% 34.4 1.6 3.1 3.6 7.5 

ELM -58.70 -88.93 -94.05 -62.97 -10.03 

8% 2.9 1.4 0.4 0.4 7.8 

SSM -61.34 -89.25 -95.14 -63.68 -9.72 

8% 1.5 1.7 1.5 1.5 4.5 

FDLM -59.46 -86.97 -93.12 -62.33 -9.18 

8% 1.6 0.9 0.7 0.6 1.3 

Element's No. 6 7 8 9 10 

0- -42.68 -65.51 -83.16 -95.17 -101.26 

FDM 44.98 81.63 89.95 69.81 41.50 

PLM 41.36 76.92 86.96 72.88 65.95 

8% 8.0 5.8 3.3 4.4 59.0 

ELM 43.77 80.52 89.51 70.97 39.65 

8% 2.7 1.4 0.5 1.7 4.5 

SSM 44.59 81.61 90.21 70.30 42.56 

8% 0.9 0.1 0.3 0.7 2.6 

FDLM 44.81 81.31 89.35 69.07 40.80 

8% 0.4 0.4 0.7 1.1 1.7 

Table 4.6 Stress Sensitivities of the Elastic Ring 

(under Vn = sin(2x)b) 
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Fig. 4.1(a) The Initial Problem of the Beam 
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Fig. 4.2 Velocity Field on the Design Boundary 
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Fig. 4.9 A Semi-Infinite Plane with an Extra Part 
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Fig. 4.10 The Semi-Infinite Plane 

Fig. 4.11 An Equilibrium State 
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Fig. 4.13 Design Boundary Perturbation 
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Fig. 4.14(a) Problem 1 
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Fig. 4.14(b) Problem 2 

Fig. 4.14( c) The Perturbation Loads 
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THE DESIGN BOUNDARY 

THE PERTURBED DESIGN 
BOUNDARY f(O d 

Fig. 4.15 The Definition of Function f 
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Fig. 4.16 An Explanation Example 
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Fig. 4.17 A Cantilever Beam 
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Fig. 4.18 Boundary Modelling 
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Fig. 4.27 An Elastic Ring Example 
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Chapter 5 

Shape Optimization Using the 

Boundary Element Method 

5.1 Introduction 

In the previous chapters, different elements of shape optimization are discussed, 

including mathematical programming methods, the boundary element method 

and shape design sensitivity analysis. An integrated shape optimization system 

contains a number of subproblems which must be treated properly in order to 

obtain a satisfied optimum design. The five main subproblems of a shape 

optimization system are described as following: 

1) Structural Analysis 

Structural analysis provides the response of a structure under certain loads. 

The responses, e.g. displacements and stresses, are used to measure the struc

tural performance, and used in optimization for the evaluations of objective 

function, constraints, and design sensitivities, so an accurate structural anal

ysis package is very important in shape optimization system. 
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2) Optimum Problem Formulation 

Transforming an engineering design into an optimization problem needs 

both experience of the engineering design as well as numerical shape optimiza

tion techniques in order to select the design variables, the objective function, 

and the constraints. For example, we want to design an elastic component with 

the minimum cost for the production and the minimum stress concentration. 

The designer may choose either a multiple objective formulation where both 

the cost and the stress concentration are to be minimized, or to choose the cost 

as the objective whereas the maximum stress concentration as a constraint. 

When considering the cost of production, he should take into account both 

the cost of the material and the manufacturing cost (labours and machines). 

The different choice of the objective function, the design variables and the 

constraints will influence the use of the optimization algorithms. 

3) Design Sensitivity Analysis 

Design sensitivity analyses provide the gradients of the objective function 

and constraints with respect to the design variables. The capability to obtain 

the design sensitivity in an accurate and efficient manner is essential for all 

shape optimization system. 

4) Optimization Algorithms 

Various mathematical programming techniques have been developed to 

solve numerical optimization problems. Unfortunately there does not exist 

a universal algorithm which works well for all problems, this is because that 

the convergence and the efficiency of a particular algorithm is dependent on 

the problem to be solved. A general shape optimization system should contain 

wide range of algorithms so that users can have many choices according to 

their problems. 
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5) Design Modeling 

As shape optimization is an iterative process, each iteration will form a 

new boundary. The task for design boundary representation, the boundary 

node relocation, the adaptive remeshing, and the error estimation, all have a 

strong influence on the final design. 

In addition to the five basic elements, an advanced shape optimization 

system should also include many other facilities, such as interactive computer 

graphics for pre- and post-processing and intermediate result displays, expert 

system to provide a design data base etc. 

The five basic elements mentioned above are connected to each other as 

a whole to form a shape optimization system. During shape optimization, 

anyone element fails to perform properly, the whole system could collapse. 

Therefore a throughout understanding of each element and careful implemen

tation are crucial for a shape optimization system. Element 1,3 and 4 have 

been discussed in chapter 2, 4 and 3 respectively. In the remaining sections of 

this chapter, we will discuss some issues of the design modelling and numeri

cal implementation of shape optimization system, and present some numerical 

examples to justify those discussions and observations. 

5.2 The Design Model and the Analysis Model 

In a shape optimization system, there exist two distinct models: the design 

model and the analysis model. The design model is used to describe the 

geometry of a design, in which the design boundary is controlled by the design 

variables, whereas the analysis model is employed for the numerical analysis. 

Generally speaking, the design model is created first which has few master 

control points, and the analysis model is imposed on the design model which 

usually has many more nodes where the geometry is defined. Fig. 5.1 shows a 

fillet example with 5 design variables located on the design boundary abo Fig. 
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5.1(a) is a design model, and Fig. 5.1(b) is an analysis model. It should be 

noted that both the design model and the analysis model are the approximation 

of the geometry of the real problem. 

5.2.1 The Design Model 

The main concern of the design modelling is: How to choose the design vari

ables, or in other word how to model the design boundary. 

One simple choice of the design variables is to select all the nodes of the 

analysis model on the design boundary as design variables. However this will 

often yield huge number of design variables, ana the continuity between ele

ments can not be guaranteed. 

The most widely used method for design variables is to choose some master 

nodes. By defining a few master nodes (also called key nodes, control nodes) 

as the design variables, the design boundary can be represented as some kinds 

of fitting of these master nodes. Various fitting techniques have been used in 

the literature, such as polynomial representation [1, 2, 3], cubic spline [4, 5, 6], 

Bezier and B-spline [10] 

The main advantage of spline fitting over the polynomial fitting is that high 

order polynomial is not stable, and can result in oscillatory design boundary, 

whereas a spline is composed by low order polynomial with continuity between 

adjacent pieces. Fig. 5.2 shows an example of the same master nodes with 

different fitting methods. It can be seen that different fitting will produce 

different curve, and the cubic spline and B-spline have a better smoothness 

than the polynomial forms. 

Another way to model the design boundary is to use the concepts of design 

elements. This method basically subdivides the boundary into a number of de-
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sign elements, with each element controlled by one to a few design parameters 

(design variables). The further details can be found in reference [7, 8, 9] 

The choice of the design variables also depends on the nature of the geom

etry of the design boundary. For example if the design boundary is a circle, 

and the design requires the shape of the design boundary remaining as a circle, 

then the obvious choices of the design variables are the position of the center 

point of the circle and the radius of the circle. 

5.2.2 The Analysis Model - Remeshing Problem 

The structural response can be solved by numerical analysis method, such as 

FEM and BEM. One special problem occurs for shape optimization problem 

due to the modification of the design boundary, therefore it is necessary to 

either relocate the nodes or totally regenerate the mesh on the design boundary. 

One main advantage of BEM over FEM in shape optimization problem is the 

attractive feature of BEM in which there is no need for domain remeshing. 

Even though boundary element discretization is relatively easier than FEM, 

it still needs an automatic mesh generator to prevent mesh distortion and odd 

distribution. Various error indicators and refinement methods have been devel

oped for BEM which have been proved to have better accuracy and efficiency 

than FEM [11, 12, 13] 

As the shape optimization system involves many iterations, so the minimum 

refinements of the mesh at each iteration can save a lot computing cost. For 

some problems, it will be not necessary for the adaptive mesh if we can put 

the first mesh right. A simple scheme is proposed for the mesh generation as 

follows: 

Step 0 A new design boundary is obtained at iteration i. 
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Step 1 The first mesh on the design boundary will be generated based OIl' the 

following three criteria. 

1. The element length is proportional to 11k, where k is the curvature of 

the boundary. Since large k will usually produce high stress variation, 

therefore this will put more elements near big stress variation. 

2. The maximum ratio of two adjacent elements should within recommended 

range, expressed as lIe ~ l;lli+! ~ e, e can be taken as 3 for smooth 

boundaries, 2 for corners. This is used to assure the Hand G matrix 

having a good conditions. 

3. The maximum length of the elements s110uid not be bigger than the 

maximum length in the previous iteration to prevent too coarse mesh. 

Step 2 Carry out the structural analysis based on the mesh given by step 1. 

Step 3 Two basic checks after the analysis of step 2. 

1. Global equilibrium, i.e. 

(5.1 ) 

where ti and bi are boundary traction and body force respectively, and 

R1 is the residual. Rl is mainly from the discretization error when the 

prescribed boundary conditions are displacements, in which the distri

bution of the unknown tractions are approximated by the interpolation 

functions. 

2. Strain Compatibility at the common nodes which belong to two adjacent 

elements, 

(5.2) 

where £1 and £2 are the strain measure at the common node i from two 

different elements 1 and 2 as shown in Fig. 5.3, and R2 is the difference 

of these two measure. R2 presents the discontinuity of the strain. 
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If either Rl or R2 is greater than the specified value, then a mesh refinement 

is needed. Go back to step 2 after the mesh refinement. Continue this process 

until both Rl and R2 satisfy the conditions. 

The mesh refinements can be carried out by two ways, the h method and 

the p method. The h method refines the mesh by decreasing the mesh size h, 

and keeps the order p of the piecewise polynomials fixed. In the p method, 

the mesh size h is fixed, and the order p of the polynomials is increased. Both 

methods and their combinations (h - p method) have been widely used in 

BEM. 

The first generated mesh by step 2 provides an easier and efficient method, 

which, in many 2-D cases, will create a well di~tributed mesh with no further 

adaptive mesh needed. Fig. 5.4 shows an application of such mesh generator, 

Fig. 5.4(a) represents the final mesh of a circle at the iteration i, and Fig. 

5.4(b) represents the first new mesh at iteration i + 1. It can be seen that the 

new mesh is well distributed. 

5.3 Shape Optimization Implementation 

5.3.1 Introduction 

The structure design is usually carried out by 'trial and error' method, which 

can be illustrated by Fig. 5.5. Starting with an initial design, the structural 

responses of the design can be evaluated by structural analysis such as FEM 

and BEM. If the analysis results do not satisfy the criteria set by engineers, 

then a new design will be proposed, which in many ways depends on the de

signer's experience and intuition. After remodelling the design, the structural 

analysis will be carried out again. Repeating this process until the analysis 

results satisfy all the criteria. 
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The analysis itself gives no indication of how to improve the design, espe

cially for a complex structure with multiple load cases. Thus it is very difficult 

for designers to modify the current designs manually. 

Optimal structural design, on the other hand, takes into account these 

criteria in a systematical way so that the modified design will move toward 

the optimal design. Fig. 5.6 shows a typical shape optimization system, which 

contains the 5 basic elements discussed in 5.1. 

The optimal design starts the optimization formulation, in which the design 

criteria are implemented into the optimization formulation in terms of objective 

function, constraints and the design variables. After the structural analysis, 
-

an improved design will be obtained by minimizing the objective, and keeping 

constraints to be satisfied. If the new design satisfies the convergence test, 

then the possible 'best design' is obtained. Otherwise the new design will be 

remeshed, and repeat the loop starting structural analysis until the satisfied 

design is obtained. As the whole design loop is done by computer, with the 

designer's interface, the design process will be more economical and reliable 

compared with the manual design. 

5.3.2 SOP - A Shape Optimization Program 

A shape optimization program - SOP (Shape Optimization Program) has been 

developed for research purpose by the author. The computer code in Fortran 

includes one main program SOP, and five main Subroutines SOPI - SOP5, 

which is used for 2-D elastic optimum structure design. The flow diagram 

of SOP is shown in Fig. 5.7. In what follows we will describe the functions 

of the main subroutines, and discuss some numerical considerations during 

implementation. 

SOP - The main program 
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The functions of SOP are to call other subroutines, and to control the 

overall flow of the program. 

SOP1 - Input data of BEM and optimization parameters 

The optimization parameters contains: number of design variables, number 

of constrains, the objective function, and the initial parameters for optimizer 

ADS. 

SOP2 - Boundary element analysis 

This subroutine solves the 2-D elastic problem using quadratic boundary 

elements. The element types can be either continuous or discontinuous, as 

shown in Fig. 5.8. 

In addition to the normal boundary conditions (tractions and displace

ments), SOP2 can also handle the point loads. The point loads are treated as 

body forces, and the system equation can be written as 

HU= GP+B (5.3) 

where H G are influence matrices, and U and P are vectors of displacements 

and tractions respectively. The body force term B with point loads bb b2 , ••• 

and bn can be obtained as: 

(5.4) 

where u*(P, Q) denotes the fundamental solutions with source point at j, and 

the integration point at i. 

The LU decomposition method is employed to solve the BEM equation. 

The procedure of LU decomposition is as following, which is mainly from [14]. 

Consider a linear equation, 

AX=F (5.5) 
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The matrix A can be decomposed as a product of two matrices, i.e. 

A=LV (5.6) 

where L is the lower triangular, and V is upper triangular, therefore, 

AX = L(VX) = LY = F (5.7) 

and 

VX=Y (5.8) 

As L is triangular, so the equation 5.7 can be solved for Y by simple 

forward substitution. After Y is known, the real unknown X can be obtained 

by solving equation 5.8, in which the back substitution will take place. 

The advantage of splitting one linear system equation into two successive 

ones is that it is more efficient to solve linear equation with different right 

hand F. After decomposition A into LV, the solutions for any right hand F 

can be obtained by one forward substitution and one back substitution. This 

feature will be useful for solving adjoint problems during sensitivity analysis, 

in which each adjoint load will be treated as one extra load case. 

SOP3 - Sensitivity analysis 

The continuum method using the adjoint loads is used for sensitivity anal

ysis. The adjoint load for displacement sensitivity is a point load (treated as 

body force), and the adjoint loads for stress sensitivity are the triangular ele

ment loads. The adjoint problems will be solved by using the already factorized 

LV method as discussed in SOP2. 

SOP4 - Optimizer ADS 

ADS is a general purpose numerical optimization programming containing a 

wide variety of algorithms, which have been widely used in optimization system 

[15]. Numerous options are provided by ADS for solving both unconstrained 
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functions and constrained functions. ADS is called by the main program SOP 

as a subroutine. 

SOPS - Mesh Generator 

A simple mesh generator for design boundary modelling is implemented 

according to the step 2 of 5.2.3. Two types of design boundary representations 

are used, one is the linear boundary representation, and the other is the cubic 

spline representation. 

The linear representation links the master nodes by straight lines. Fig. 5.9 

shows an example of design boundary ab controlled by n master nodes bI, b2 , 

... , bn • In the case of the design variables bi presenting the y coordinates of 

the boundary ab, and Xi is the x coordinate of b;, then the design boundary 

can be expressed as, 

Xi+1 - X X - xi 
f(x)= '+1 .bi+1+ '+1 .bi x· - x· x· - x· 

(5.9) 

The variation of the design boundary is, 

(5.10) 

Sf will be used to calculate the velocities in normal and tangential directions 

(i.e. Vn and Va). 

A cubic spline is constructed by piece-wise third-order polynomials ar

ranged such that adjacent elements are forced to join together with continuous 

first and second derivatives. Therefore cubic splines do not have the wiggle 

problem associated with high-order polynomials [16]. 

Consider n master nodes with coordinates (xl, yl), (x2, y2), ... , (xn, yn) 

as shown in Fig. 5.lD, and the y coordinates are the design variables. So the 

design boundary on interval xi and xi+1 has the form [14], 

f(x) = AYi + BYi+l + GYi + DYi+1 (5.11) 
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where iii denotes the second derivative of the curve, and 

A 
X i+l - X 

= Xi+! - xi 

B 
x_xi 

xi+! - Xi 

C !(A3 _ A)(xi+! _ xi? 
6 

D !(B3 _ B)(xi+! _ xi)2 
6 

(5.12) 

let Xi+l - xi = h, and substituting 5.12 into 5.11, 

f(x) = 
Xi+l _ X X - xi Xi+l - X . 

+ + _-:--_[( .+1 )2 h2]" h Yi -h-Yi+! 6h x - x - Yi 

x-x' i 2 2 •• 
+~[(x - x) - h jYi+! (5.13) 

where Yi = bi, Yi+! = bi+!. Y can be obtained by considering the continuity of 

the second derivative at every node, and by specifying the boundary conditions 

at Xl and xn [17]. 

The variation f due to the change of the design variable bi can be derived 

as 

bf(x) 

i 
X - X [( i)2 h2]c. +~ x-x - UYi+! (5.14) 

note that each time only one design variable is nonzero, I.e. only one bYi 

IS nonzero. The evaluaton of by can be carried out by the finite difference 

method. 

5.4 Numerical Examples 

The program SOP is used here for shape optimal design problems. Some of 

the examples are solved by modified version of SOP - called SOP1, in which 
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BEASYG and BEASy l are used for the preprocessor and structural analy

ses. Numerical examples are presented to justify the theory implemented in 

SOP, and to investigate the different features of shape optimization. The four 

examples are: 

1) A beam example 

2) A fillet example 

3) An infinite plate with a hole 

4) A connecting rod 

The objective function for all these examples is the area of the component, 

which can be calculated by transforming the domain integral into boundary 

integral using Greens theorem, i.e. 

(5.15) 

where n is the boundary element number, ny is the y component of normal 

vector, and Yi is the y coordinate of element i. 

The constraint is the Von Mises stresses, 

(J 

G(x) = --1 (5.16) 
(Ja 

where (Ja is the allowable stress, and (J is the Von Mises stress which can be 

expressed as 

The stress sensitivities are carried out by using the continuum method, 

in which the adjoint loads are the distributed triangular loads. The design 

variables are the master nodes on the design boundary. The design boundary 

is modelled by either linear or cubic spline representation. 

1 BEASYG and BEASY are the commercial programs of Computational Mechanics 

Institute 
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5.4.1 A Beam Example 

The first example is the optimum design of a cantilever beam. The beam is 

subject to a uniform vertical traction at its right end with p = ION 1m, and 

the total force P = 40N will remain constant during optimization. The initial 

shape and the boundary discretization of the beam are shown in Fig. 5.11, 

where b = 4m, I = 10m. 

The problem is considered as a plane stress problem. The material prop

erties are: Young's modulus E = 1.0 X 107 psi, Poission's ratio v = 0.3. The 

allowable stress is taken arbitrarily as IJa = 130Nlm2. 

The design model is shown in Fig. 5.12, in which 5 master nodes are 

chosen as the design variables, which can move in y direction only. Due to the 

symmetry, the master nodes on the top surface of the beam can be linked with 

the design variables as 

Yi+5 = 2c - Yi , i =,1,2,3,4,5 (5.17) 

where c is the Y coordinate of the central axis. The design boundary is formed 

by piecewise straight line connecting the master nodes. 

The initial value of the objective function is 40.000, and the maxImum 

stress violation is 6.3 x 10-2 • The final deign is obtained after 7 iterations, the 

objective function is reduced to 29.066, and the maximum stress violation as 

0.42 x 10-2 which is within the required limits of maximum stress violation 

1.0 x 10-2 • The term 'final design (sometimes called optimum design)' is 

used here to indicate the final design after the convergence test, in which the 

objective reaches a local minimum, and all the constraints are satisfied. 

The modification history and the history of the objective function of the 

beam are shown in Fig. 5.13 and Fig. 5.14 respectively. It is noted that the 

shape at iteration 3 is nearly the same as the final shape. This also can be 

seen from the history of the objective, in which it decreases rapidly in the first 
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3 iterations, and then keeps almost constant. 

The stress distribution of the beam at the initial design and the final design 

are shown in Fig. 5.15, which indicate that the stress level over the design 

surface has increased significantly. The big variation of the Von Mises stress 

along the design boundary are due to two reasons, 1) the mesh is very coarse, 

2) the design boundary is piecewise linear, which will produce sudden change 

of the geometry at the master nodes. 

A refined mesh is used next as shown in Fig. 5.16, with 7 master nodes 

Yb ... , Y7· The optimum design is obtained after 7 iterations as shown in Fig. 

5.17, which is nearly identical to the previous design. The stress distribution 

of this design is far smoother as can be seen from Fig. 5.18. This shows that 

even with similar shape, the stress distribution by BEM can differ a lot with 

different meshes, therefore it is advisable to avoid using a too coarse mesh in 

shape optimization problems. 

In order to prevent the appearance of the nonsmooth boundary, a cubic 

spline boundary representation is employed. 7 design variables are used with 

the initial mesh as in Fig. 5.16. During optimization, the automatic remeshing 

is carried out to put more elements near the tip such that the load effects can 

be confined in a small area. The design converges at iteration 8, and the 

final design and the mesh distribution are shown in Fig. 5.19. The stress 

distribution of the final design are shown in Fig. 20. It can be seen that the 

stresses are more smoother than the linear case (Fig. 5.18). 

5.4.2 A Fillet Example 

The fillet example has been widely used to test optimization system, since it 

presents a large number of optimization problems with stress concentrations 

[18, 19]. The initial geometry of the fillet is shown in Fig. 5.21, where ab is 
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the design boundary with a and b fixed. The external load p at the right hand 

end is 100 psi. The material properties are: E = 1.0 X 107 psi, v = 0.3. The 

allowable stress is assumed as 120 psi. 

Piecewise linear design boundary 

The y coordinates of 9 points on the design boundary are chosen as design 

variables as shown in Figure 5.22. The initial value of the objective function 

is 145.125, and the maximum stress violation is 0.244. The final design is 

obtained after 9 iterations, the objective function reduces to 134.420, and the 

maximum stress violation is 2.13 x 10-2 • The initial design variables are 

4.950,5.400,5.850,6.300,6.750,7.200,7.650,8.100,8.550 

and the final values are 

4.500,4.501,4.586,5.650,4.789,4.922,5.143,5.384,5.806 

The final shape is shown in Figure 5.23. 

If only 4 design variables are used, i.e. Y2,Y4,YS and Ys, then the design con

verge after 6 iterations, the objective function becomes 138.046, and there is no 

stress violation. The final design is shown in Fig. 5.23. It can be observed that 

the linear boundary representation produce a nonsmooth boundary, especially 

for the case of less design variables. 

Cubic spline boundary 

The 9 design variables are the same as in piecewise linear boundary shown 

in Figure 5.22. The final design is obtained after 8 iterations, the objective 

function reduces to 134.284, and the maximum stress violation is 4.9x10-3 . 

The design variables at the final shape are 

4.504,4.504,4.571,4.636,4.766,4.896,5.101,5.311,6.069 

The final boundary shape is shown in Figure 5.24. 
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Figure 5.25 shows the change of the objective function and the maximum 

stress constraint during the optimization process. It can be seen that the ob

jective function reaches the minimum for the first few iterations, the maximum 

stress constraint does not converge at this stage. Then both the objective func

tion and the maximum stress constraint converge to the final optimal values 

as the iteration proceeds. 

If only 4 design variables are used, after the same number of the itera

tions, the objective function is 137.294, and the maximum stress violation is 

7.6xlO-3 . The final design is shown in Figure 5.24. 

New design variable system using the <:ubic spline 

It is noted that the left hand design boundary of the final design (Fig. 5.24) 

is nearly vertical, therefore this part of the design boundary is not efficiently 

controlled by the master nodes. A new set of design variables is chosen as 

shown in Fig. 5.26 which takes into account this consideration. The design 

variables are equally spaced along x, and can move in y direction only. 

Different number of design variables (NDV) are used, and the final shapes 

are shown in Fig. 5.27. If no remeshing is carried out during the optimization, 

the final design has a wiggling design boundary as shown in Fig. 5.27(a), 

whereas the remeshed final design of Fig. 5.27(b) is smooth. The final designs 

are almost the same for NDV = 5,7,9, which have a similar shape with FEM 

results [18]. But further decrease NDV from 5 to 3 will cause a nonsmooth 

boundary and a big increase of the objective function. The further increase 

NDV from 9 to 11 will result in a wiggling boundary. Therefore we have the 

observation: if the master nodes are used as design variables, the number of 

design variables should be within a range in order to get a smooth boundary. 

According to author's experiences, the remeshing of the design boundary is 

easier for small NDV than big NDV. The wiggling shape for large NDV also 

appears in using FEM for the optimum design of the fillet [18]. 



www.manaraa.com

157 

5.4.3 A Plate With a Hole 

A square plate with a central hole is shown in Fig. 5.28, subject to the in

plane tensile loads. The objective is to reduce the stress concentration along 

the hole. It has been proved that the best shape of the hole in an infinite plate 

for minimum stress concentration is an elliptic, with the ratio of the axes being 

equal to the ratio of the applied tensile loads, i.e. 

a ax 
-=-=v 
b ay 

(5.18) 

where a and b present the axes of the elliptic in x and y direction respectively, 

v is the ratio of the applied stresses in x and y directions. 

Since the size of the hole is far smaller than the size of the plate, therefore 

the plate can be treated as an infinite plate, so the optimum shape of the hole 

can be taken as an elliptic with alb = v. 

Due to symmetry, only quarter of the plate is considered, and the design 

model is shown in Fig. 5.29. 7 design variables are used, which present the 

distance of the boundary master nodes to the central point o. The design 

boundary is represented by a cubic spline passing through the 7 master nodes. 

The mesh at the initial shape is also shown in Fig. 5.29. 6 elements are used 

to describe the quarter of the hole. 

Case 1, v = 1 

(The analytical solution is a circle) 

The final design is obtained after just 4 iterations as shown in Fig. 5.30, 

which is almost a circle. The maximum error of the geometry is 0.5%, and the 

maximum stress error is 2.1 %. The geometry error is defined as 

8g = ,rnu - ran, 
ran 

(5.19) 

where rnu and ran are the numerical value and the analytical value respectively. 
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The stress error is defined as 

{is = I (Tnu - (Tan I 
(Tan 

(5.20) 

where (Tnu and (Tan are the numerical stress and the analytical stress respec

tively. The analytical stress along an elliptic in an infinite plate is (Tan = (Tx+(Ty' 

Case 2, v = 2 

(The analytical solution is an elliptic with alb = 2. 

The final design is reached in 6 iterations, which is shown in Fig. 5.31. 

The maximum geometry error is 1.9%, and the maximum stress error is 4.9%. 

It should be mentioned here that the cubic spline can never model an elliptic 

exactly, so further reducing the geometry error is nearly impossible. 

5.4.4 A Connecting Rod 

This example is taken from Abe et al. [20] as shown in Fig. 5.32. The load p is 

200 psi, and the allowable stress is 400 psi. The right quarter circle is subject 

to normal displacement constraints. 

The design boundary is ab with a and b fixed. The geometry constraints 

are introduced such that tIle minimum dimensions of the fillet are not less than 

the left side width in order to prevent buckling. It is assumed that the stress 

constraints are on the design boundary only. 

Let us consider the linear boundary representation first, in which 7 master 

nodes on the design boundary are chosen as the design variables. The final 

design is obtained after 8 iterations as shown in Fig. 5.33. The area of the 

connecting rod is reduced from 701.487 at the initial design to 463.762 at the 

final design. This result is similar with the result by Abe et al. [20]. 

In order to obtain a more smooth boundary, a cubic spline is used with 

6 master nodes on the design boundary. The final design is obtained after 7 
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iterations, and the area is reduced to 463.135. The final shape is shown in Fig. 

5.34. 

It is found from the final designs of both linear case and the cubic spline 

case that there is no stress violation all over the boundary except the stress 

near the point A on the top of the half circle, in which the stress violation is 

40% for the linear case and 35% for the cubic case. This is because that the 

stress at A of the initial design is 380 psi, which is quite close to the allowable 

stress. Any deep cut along the fillet boundary will increase the stress at A 

significantly. If the stress constraints are imposed on all the boundary, then 

the final design using the cubic spline is obtained after 12 iterations. The 

area is reduced to 570.721, and there is no stress violation. The final design is 

shown in Fig. 5.35. 



www.manaraa.com

160 

5.5 References 

[1] Bhavikatti, S. S., Ramakrishnan, C. v., Optimum Shape Design of Ro

tating Disks, Comput. Struct., 11, 1980, pp. 397-401. 

[2] Imam, M. H., Three-Dimensional Shape Optimization, Int. J. Numer. 

Meth. Engng., 18, 1982, pp. 661-673. 

[3] Botkin, M. E., Shape Optimization of Plate and Shell Structures, AIAA, 

20, 1982, pp. 268-273. 

[4] Week, M., Steinke, P., An Efficient Technique in Shape Optimization, J. 

Struct. Mech., 11, 1983, pp. 433-449. 

[5] Luchi, M. 1., Poggialini, A., Persiani, F., An Interactive Optimization 

Procedure Applied to the Design of Gas Turbine Discs, Comput. Struct., 

11, 1980, pp. 629-637. 

[6] Zhzo, Z. Y., Adey, R. A., Shape Optimization, A Numerical Consider

ation, Proc. BEM11, CMP and Springer-Verlag, Boston, August, 1989, 

pp.195-210. 

[7] Fleury, C., Computer Aided Optimal Design of Elastic Structures, Prof. 

Computer Aided Optimal Design: Structural And Mechanical Systems, 

Springer-Verlag, 1987. 

[8] Rasmussen, J., Interactive Shape Optimization with Design Elements, 

Proc. GAMM Seminar, FRG, Springer-verlag, 1988. 

(9] Kane, J. H., Optimization of Continuum Structures Using A Boundary 

Element Formulation, PhD thesis, University of Connecticut, USA, 1986. 



www.manaraa.com

161 

[10] Braibant, V., Fleury, C., Shape Optimal Design Using B-Spline, Comput. 

Meth. Appli. Mech. Engng., 44, 1984, pp. 247-267. 

[11] Mota Soares, C. A., Leal, R. P., Choi, K. K., Boundary Elements in 

Shift Optimal Design of Structural Components, Computer Aided Design: 

Structural and Mechanical Systems, Springer-Verlag, 1987, pp. 605-632. 

[12] Gonzalez, A., Alarcon, E., adaptive Refinements in Boundary Elements, 

Proc. First World Congress on Computational Mechanics, Austin, Texas, 

1986. 

[13] Rencis, J. J., Muellen, R. 1., A Self-Adaptive Mesh Refinement Technique 

for Boundary Element Solution of the Laplace Equation,Comput. Meth. 

Appl. Mech. Engng., 1986. 

[14] Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., Nu

merical Recipes, Cambridge University Press, Cambridge, 1987. 

[15] Vanderplaats, G. N., ADS - A Fortran Program For Automated Design 

Synthesis, Engineering Design Optimization Inc., USA, 1987. 

[16] Rogers, D. F., Adams, J. A., Mathematical Elements for Computer 

Graphics, McGraw-Hill Book Company, New York, 1967. 

[17] Mortenson, M. E., Geometric Modeling, John Wiley & Sons, 1985. 

[18] Yang, R. J., Choi, K. K., Haug, E. J., Numerical Considerations in Struc

tural Component Shape Optimization, ASME, 107, 1985, pp. 334-339. 

[19] Choi, J. H., Kwak, B. M., Boundary Integral Method for Shape Opti

mization of Elastic Structures, Int. J. Numer. Meth. Engng., 26, 1988, 

pp. 1579-1595. 

[20] Abe, J., Nagai, T., Kamiya, N., Minimum Weight Design by Boundary 

Element Method, Computer Aided Optimum Design: Recent Advances, 

CMP and Springer-Verlag, Southampton, UK., 1989. 



www.manaraa.com

162 

b 
MASTER NODES 

/ 
0. 

Fig. 5.1(a) The Design Model 

BOUNDARY ELEMENTS 

/ 

Fig. 5.1(b) The Analysis Model 



www.manaraa.com

163 

.•.. ------

""'-""" 

"-"-",,-

'" 
-""-" \pOL YNOMIAL 

"'CUBIC SPLINE 
--------B - S P LI N E 

--------lINEAR 

----- ._ -MASTER NODES 

Fig. 5.2 The Comparison of the Different Curves 



www.manaraa.com

164 

COMMON NODE l 

o I o 

ELEMENT 1 I ELEMENT 2 

Fig. 5.3 The Common Node on a Smooth Boundary 

Fig. 5.4(a) Modelling of a Quarter Circle 
(iteration i) 

1- __ 

Fig. 5.4(b) Modelling of a Quarter Elliptic 
(Iteration i+l) 



www.manaraa.com

INlTIAL DESIGN 

STRUCTURAL 
ANALYSIS 

DESIGN 
SATISFIED ? 

YES 

165 

NO MANUAL 
REDESIGN 

Fig. 5.5 Manual Design Process 



www.manaraa.com

INlTIAL DESIGN 

STRUCTURAL 
ANALYSIS 

NUMERICAL 
OPTIMIZATION 

166 

CONVERGENCE NO 
TEST >---=-----'7----' 

YES 

Fig. 5.6 Automatic Design Process 



www.manaraa.com

167 

MAIN PROGRAM (SOP) 

\11 

INPUT DATA AND 
PROBLEM FORMULA TlON (SOPl) 

MESH 
L GENERATOR '-

\V (SOPS) 

STRUCTURAL ANALYSIS (SOP2) /1\ 

\V 
I SENSITIVITY ANALYSIS (SOP3) 

\I 
I OPTIMIZER (SOP4) J 

\V 

CONVERGENCE NO 
TEST 

YES 

\II 

l END I 

Fig. 5.7 The Flow Chart of SOP 



www.manaraa.com

168 

NODE 
EP 0 EP 0 EP 0 Ql 

I ELEMENT I 

CONTINUOUS ELEMENTS 

EP 0 GIG 0 GIO 0 Ql 

DISCONTINUOUS ELEMENTS 

Fig. 5.8 The Element Types 

y b 

~ ____________________________ ~x 

Fig. 5.9 The Linear Boundary Representation 

y 

Ii\ 
bj 

~------------------------------7X 

Fig. 5.10 The Cubic Spline Boundary Representation 



www.manaraa.com

169 

P b 

2 3 4 5 6 7 8 

L 

Fig. 5.11 The Beam Example 

Y6 Y7 Y8 Y9 YIO 

c - -c 

Y3 Y4 Y5 

Fig. 5.12 The Design Model 



www.manaraa.com

>-

o 
o 
CD 

o 

170 

INITIAL SHAPE 
I I I I I ITERATION 2 
00000 ITERATION 7 

O~--~--~--~~--~--~--~--~--~--~~---. 

6.00 12.00 
x 

Fig. 5.13 Modifications of the Beam 



www.manaraa.com

171 

5 design variables 

0 
~ 7 design variables 

'T 

e 
0 

-+--' 
ot.O 
en 
:J 

LL 

Q) 

.2':0 
-+--'n 
u 
Q) _6 " . ---. 

..0 
0 

t.O 
N 

~-r-----'-----'----'-----'-----'-----'-----'----' 
o 8 

Iteration Number 

Fig. 5.14 History of the Objective Function 



www.manaraa.com

en 

o 
N 

en 
Q)O 
LO 

-+--' ~ 
(f) 

enO 
Q)aJ 
en 
2 

o 
c<.O 
o 
> o 

..q-

o 
N 

172 

+-+---t-+-+ At the Initial Design 
~~ At the Final Design 
-- The Yield Stress 

O~----,-----.-----.----.-----.-----.----~--~ 

o 8 
Element's N u nl ber 

Fig. 5.15 The Stress Distribution of the Beam 
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Fig. 5.18 Stress Distribution of the Beam 
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Fig. 5.19 The Mesh at the Final Design 
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Fig. 5.22 The Analysis Model and the Design Variables 
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Fig. 5.26 New Design Variable System 
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Fig. 5.27(a) The Final Design without Remeshing 
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Fig. 5.27(b) The Final Design with Remeshing 
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Fig. 5.30 The Final Design (v = 1) 

Fig. 5.31 The Final Design (v = 2) 
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Fig. 5.33 The Final Design (Linear Case) 
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Fig. 5.34 The Final Design (Cubic Spline) 

Fig. 5.35 The Final Design (Cubic Spline) 
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Appendix A 

Fundamental Solutions of the 

Semi-infinite Plane 

For a semi-infinite plane under a unit load as shown in Fig. A-l, the Mindlin's 

solutions are (plane strain): 

Stresses: 

(A.l) 

(A.2) 

(A.3) 

Displacements: 

(A.4) 

(A.5) 

where kd = 1/27rG, and G is the shear modulus. 

For a semi-infinite plane under one pair unit loads along the tangential 

direction as shown in Fig. A-2, the solutions can be obtained by differentiating 
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the Mindlin's solutions in y direction, the solutions are given below for plane 

strain. 

Stresses: 

(A.6) 

(A.7) 

(A.8) 

Displacements: 

(A.9) 

(A.lO) 

Boundary tractions: 

(A.l1) 

(A.12) 

Where nx and ny are the direction cosines of the normal in x and y direc

tions respectively. 
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Appendix B 

Derivatives of Boundary 

Stresses on the Normal 

Direction 

Consider an equilibrium structure with traction boundary T as shown in Fig. 

B-l. Taking a small block A with one side coincide with boundary T out from 

the domain O. The stress state of the block is shown in Fig. B-2, in which the 

polar coordinates are used. 

By considering the equilibrium of block A in radial and tangential direc

tions, and taking the dimension of the block A approaching to zero, we obtain 

Bar 
+ Baro ar -as X 

Br rBe + r + r 

Baro 
+ Bao 2ar8 X (B.l) 

Br -+-+ 8 re r 

(B.l) can be rearranged to obtain the derivatives of the stresses along n-

direction, 

Ban k(Baro ar - a8 X) 
Bn- rBe + r + r 
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= k(au(J 2ur (J X) rao + -r-+ (J (B.2) 

where Xr and X(J are the components of the body force. r is the radius of the 

boundary, k = 1 if n+ is in the r direction (i.e. convex boundary), otherwise 

k = -1. Un UTO are the boundary tractions, 170 is the tangential stress, which 

can be evaluated by differentiating the displacement field of the BEM solutions 

on the boundary. Thus once we know the BEM solutions, the above two stress 

derivative along n- direction can be obtained numerically. 

For straight boundary, (B.2) can be simplified as: 

(B.3) 

where Us denotes the tangential stress, and Usn is the tangential traction, which 

has the positive sign if it is along S+ direction. Xn and Xs are the components 

of the body force. 
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Fig. A-2 Semi-Infinite Plate under a Pair Loads 
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Fig. B-1 An Equilibrium Body 

Fig. B-2 The Equilibrium of the Block A 
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